Featured Research

from universities, journals, and other organizations

Key Factor In Brain Development Revealed, Offers Insight Into Disorder

Date:
March 27, 2008
Source:
University of California - San Francisco
Summary:
In the earliest days of brain development, the brain's first cells -- neuroepithelial stem cells -- divide continuously, producing a population of cells that eventually evolves into the various cells of the fully formed brain. Now, scientists have identified a gene that, in mice, is critical for these stem cells to divide correctly. Without it, they fail to divide, and die.

In the earliest days of brain development, the brain’s first cells – neuroepithelial stem cells -- divide continuously, producing a population of cells that eventually evolves into the various cells of the fully formed brain. Now, scientists have identified a gene that, in mice, is critical for these stem cells to divide correctly. Without it, they fail to divide, and die.

Related Articles


The finding offers insight into the first steps of brain development, and may shed light, the scientists say, on a rare pediatric disorder known as lissencephaly, or “smooth brain” disease.

Scientists have known that loss of one of the two copies of the human form of the gene, known as LIS1, prevents immature nerve cells from migrating from deep in the brain up to the surface of the emerging cerebral cortex. These immature cells, produced from so-called radial glial progenitor cells – which in turn evolve from neuroepithelial stem cells – stall at mid point in their migration, creating a thick layer of tissue.

As a result, the cerebral cortex, lacking an influx of properly connected nerve cells, develops a smooth surface, devoid of convoluted nerve tissue. The resulting disease, lissencephaly, varies in severity, but often leads to retardation, seizures and early childhood death.

Scientists have had evidence that, in addition to their role in migration in immature nerve cells, the human and mouse forms of the gene may play a role in cell division and proliferation processes in radial glial progenitor cells. However, scientists have not known what that role would be. Nor have they known what role, if any, the gene plays earlier on in brain development -- in neuroepithelial stem cells, themselves.

The senior author of the study was Anthony Wynshaw-Boris, MD, PhD, the recently recruited chief of the Division of Genetics in the Department of Pediatrics, and the Institute for Human Genetics at the University of California, San Francisco. He carried out the research while a professor at the University of California, San Diego. Several co-authors of the study moved with Wynshaw-Boris to the UCSF lab.

In their study, reported in the Feb. 8 issue of Cell, the scientists investigated embryonic mice genetically engineered to completely lack Lis1 in their cells at various stages of embryonic development. In a surprising finding, they discovered that Lis1 is essential for cell division in neuroepithelial stem cells. It also is important, though not essential, for cell division in the radial glial progenitor cells.

Lis 1, they showed, plays a critical role in ensuring that neuroepithelial stem cells divide symmetrically, so that both daughter cells receive the full set of duplicated chromosomes and the molecular components that support cell functions. It does so by helping regulate the orientation of the cells’ mitotic spindles -- the microtubules that draw the two sets of chromosomes into position on either side of the dividing mother cell and that demarcate, at their center, the cleavage point of cell division.

Specifically, Lis 1 makes sure that the mitotic spindle is oriented perpendicular to the top and base components of the neuroepithelial stem cells, so that each daughter cell not only receives the appropriate genetic material but also contains molecular components at the top and bottom, or the basal and apical, portion of the cell membrane, respectively.

“In neuroepithelial stem cells, the apical and basal plasma membranes are only a tiny fraction of the total cell membrane, so the orientation of division must be precisely controlled either to make sure that both sides of each of the daughter cells are attached at both the apical and basal surfaces as they rapidly divide or to distribute apical and basal components equally to the daughter cells,” says Wynshaw-Boris.

The scientists hypothesize that Lis1 carries out the role by directing the movement of a molecular motor known as dynein to the surface of both sides of the cell membrane. There, dynein takes a fixed position and, like a molecular hook, pulls the microtubules that emanate from the middle of the cell toward it.

“Just like a pulley, dynein draws the microtubules through it and that, in turn, rotates the spindle,” suggests Wynshaw-Boris.

Loss of Lis1, results in reduced and weakened microtubules and an inability of the mitotic spindle to rotate the microtubules properly in the apical-basal axis.

Of note, while loss of Lis1 is catastrophic in neuroepithelial stem cells, it is not so in radial glial progenitor cells. The reason is not entirely clear, says Wynshaw-Boris, but the scientists hypothesize that neuroepithelial stem cells require a greater tightness of control of the plane of cell division. In support of this notion, while neuroepithelial stem cells appear to always divide symmetrically, radial glial progenitor cells often divide asymmetrically to produce one daughter cell (radial glial progenitor cell) and one newborn nerve cell.

“The study sheds some light on the differences in the regulation of symmetric and asymmetric divisions in neuroepithelial stem cells and radial glial progenitor cells,” says Wynshaw-Boris.

More broadly, he says, the findings suggest that neural migration birth defects, such as lissencephaly, may be caused by defects in other processes, as well, including proliferation, division and, in this case stem cell division. “It gives insight,” he says, “into these rare diseases and what’s important for normal brain development.”

The co-first authors of the study were Jessica Yingling and Yong Ha Youn. Other co-authors of the study were Dawn Darling, Kazuhito Toyo-oka, Tiziano Pramparo and Shinji Hirosune.

The study was funded by the National Institutes of Health and National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Francisco. "Key Factor In Brain Development Revealed, Offers Insight Into Disorder." ScienceDaily. ScienceDaily, 27 March 2008. <www.sciencedaily.com/releases/2008/03/080326144219.htm>.
University of California - San Francisco. (2008, March 27). Key Factor In Brain Development Revealed, Offers Insight Into Disorder. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2008/03/080326144219.htm
University of California - San Francisco. "Key Factor In Brain Development Revealed, Offers Insight Into Disorder." ScienceDaily. www.sciencedaily.com/releases/2008/03/080326144219.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Media Criticizing Parents For Not Vaccinating Children

Media Criticizing Parents For Not Vaccinating Children

Newsy (Jan. 28, 2015) As the Disneyland measles outbreak continues to spread, the media says parents who choose not to vaccinate their children are part of the cause. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins