Featured Research

from universities, journals, and other organizations

Innovative Atom Trap Catches Highly Magnetic Atoms, Cools Atoms To Almost Absolute Zero

Date:
April 5, 2008
Source:
National Institute of Standards and Technology
Summary:
Scientists have succeeded in cooling atoms of a rare-earth element, erbium, to within two millionths of a degree of absolute zero using a novel trapping and laser cooling technique. Potential applications range from nanoscale sensors to quantum computing.

Trapped erbium: Color-enhanced image of a cloud of erbium atoms trapped and cooled and a narrow-line MOT using a single laser beam. The laser beam is coming down from the top of the image, which measures about 1 millimeter square. The atoms collect along the ellipse of a constant magnetic field (dashed line) where they come into resonance with the laser. A faint cloud of residual, higher temperature atoms caught in the magnetic trap can be seen as well.
Credit: Berglund/NIST

A research team from the National Institute of Standards and Technology (NIST) and the University of Maryland has succeeded in cooling atoms of a rare-earth element, erbium, to within two millionths of a degree of absolute zero using a novel trapping and laser cooling technique. Their recent report* is a major step towards a capability to capture, cool and manipulate individual atoms of erbium, an element with unique optical properties that promises highly sensitive nanoscale force or magnetic sensors, as well as single-photon sources and amplifiers at telecommunications wavelengths. It also may have applications in quantum computing devices.

The strongly counterintuitive technique of "laser cooling" to slow down atoms to very low speeds--temperatures close to absolute zero--has become a platform technology of atomic physics. Laser cooling combined with specially arranged magnetic fields--a so-called magneto-optical trap (MOT)--has enabled the creation of Bose-Einstein condensates, the capture of neutral atoms for experiments in quantum computing and ultra-precise time-keeping and spectroscopy experiments.

The technique originally focused on atoms that were only weakly magnetic and had relatively simple energy structures that could be exploited for cooling, but two years ago a NIST team showed that the far more complex energy structures of erbium, a strongly magnetic element, also could be manipulated for laser cooling.

The typical MOT uses a combination of six tuned laser beams converging on a point that is in a low magnetic field but surrounded by stronger fields. Originally, the lasers were tuned near a strong natural energy oscillation or resonance in the atom, a condition that provides efficient cooling but to only moderately low temperatures. In the new work, the research team instead used much gentler forces applied through a very weak resonance in order to bring erbium atoms to within a few millionths of a degree of absolute zero.

Such weak resonances are only available in atoms with complex energy structures, and previously have been used only with a select group of non-magnetic atoms. When a strongly magnetic atom like erbium is used, the combination of strong magnetic forces and weak absorption of laser photons makes a traditional MOT unstable.

To beat this, the NIST/UM team turned classic MOT principles on their heads. Rather than shifting the laser frequency towards the red end of the spectrum--to impact fast, high-temperature atoms more than slow, cold ones--they shifted the laser towards the blue side to take advantage of the effects of the magnetic field on the highly magnetic erbium. Magnetism holds the atoms stably trapped while the lasers gently pushed them against the field, all the while extracting energy and cooling them.

The delicate balancing act not only cools and traps the elusive erbium atoms, it does it more efficiently. The team's modified trap design uses only a single laser and can cool erbium atoms to within two millionths of a degree of absolute zero. By contrast, a conventional MOT only brings rubidium atoms to about one ten-thousandth of a degree.

Erbium commonly is used in optical communications components for its convenient magneto-optical properties. The new trapping technique raises the possibility of using erbium and similar lanthanide elements for unique nanoscale magnetic field detectors, atomic resolution metrology, optical computing systems and quantum computing.

* A.J. Berglund, J.L. Hanssen and J.J. McClelland. Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms. Physical Review Letters, V. 100, p. 113002 , March 18, 2008.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Innovative Atom Trap Catches Highly Magnetic Atoms, Cools Atoms To Almost Absolute Zero." ScienceDaily. ScienceDaily, 5 April 2008. <www.sciencedaily.com/releases/2008/04/080402100014.htm>.
National Institute of Standards and Technology. (2008, April 5). Innovative Atom Trap Catches Highly Magnetic Atoms, Cools Atoms To Almost Absolute Zero. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/04/080402100014.htm
National Institute of Standards and Technology. "Innovative Atom Trap Catches Highly Magnetic Atoms, Cools Atoms To Almost Absolute Zero." ScienceDaily. www.sciencedaily.com/releases/2008/04/080402100014.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins