Featured Research

from universities, journals, and other organizations

Blood Vessels: The Pied Piper For Growing Nerve Cells

Date:
April 13, 2008
Source:
Johns Hopkins Medical Institutions
Summary:
Researchers have discovered that blood vessels in the head can guide growing facial nerve cells with blood pressure controlling proteins. The findings suggest that blood vessels throughout the body might have the same power of persuasion over many nerves.

Researchers at Johns Hopkins have discovered that blood vessels in the head can guide growing facial nerve cells with blood pressure controlling proteins. The findings, which suggest that blood vessels throughout the body might have the same power of persuasion over many nerves, are published recently in Nature.

"We're excited to have stumbled across another family of proteins that can tell a growing nerve which way to grow," says David Ginty, Ph.D., a professor of neuroscience at Hopkins and investigator of the Howard Hughes Medical Institute. "But the really interesting thing is that the nerves appear to use blood vessels as guideposts to direct their growth in one of several possible directions."

The research team studied in mice a group of about 15,000 nerve cells known as the superior cervical ganglia, or SCG, which extend projections that innervate various structures in the head including the eyes, mouth and salivary glands. The SCG sits in a Y-like branching point of the blood vessel in the neck that supplies the head with blood, the carotid artery. In the developing embryo, nerve projections grow out of the SCG and grow along one of the two branches of the carotid artery; the nerves that grow along the internal carotid innervate the eyes and mouth among other head structures, and those that grow along the external carotid innervate the salivary glands.

To figure out how nerve cells "choose" to grow along the external carotid artery to innervate the salivary glands, the team looked for genes that appear to be preferentially turned on in the external carotid, and off in the internal carotid. Says Ginty, "There's only two directions they can go and we wanted to know if they choose their direction or if the decision to go one way or the other is random."

They found one gene that is expressed preferentially in the external carotid, a gene that makes the blood pressure regulating protein, endothelin, active. "It comes as no surprise that something critical for regulating the cardiovascular system in the adult also is used for directing nerve growth in the developing embryo," says Ginty. "The genome is limited and nature has figured out a way to use things over and over again for unrelated functions."

Further examination of the arteries in mouse embryos confirmed that endothelin is found only in the external carotid. To confirm that the nerve cell projections grow toward endothelin, the researchers removed SCGs and grew each one next to an endothelin-soaked bead. Checking on them three days later, the team found that nerves from the SCGs had grown towards the beads. To be certain that endothelin directs nerve growth in the living animal, the researchers then looked in mice that had the endothelin gene removed. Sure enough, these mice had no nerves growing along their external carotid arteries.

The team then wondered if all growing nerves in the SCG can respond to endothelin. So they looked for the endothelin receptors in SCG nerves and found only a subset of SCG nerves make endothelin receptors and concluded that those nerves somehow already had been chosen to respond to the endothelin made by the external carotid.

"How do these nerve cells know which target organ they're supposed to innervate when they all come from the same progenitor?" asks Ginty. "This is what we're going to study next."

The research was funded by the National Institutes of Health and the Howard Hughes Medical Institute.

Authors on the paper are Takako Makita and Ginty of Hopkins; Henry Sucov of the University of Southern California; Cheryl Gariepy of the University of Michigan; and Masashi Yanagisawa of the University of Texas Southwestern Medical Center.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Blood Vessels: The Pied Piper For Growing Nerve Cells." ScienceDaily. ScienceDaily, 13 April 2008. <www.sciencedaily.com/releases/2008/04/080410153636.htm>.
Johns Hopkins Medical Institutions. (2008, April 13). Blood Vessels: The Pied Piper For Growing Nerve Cells. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2008/04/080410153636.htm
Johns Hopkins Medical Institutions. "Blood Vessels: The Pied Piper For Growing Nerve Cells." ScienceDaily. www.sciencedaily.com/releases/2008/04/080410153636.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins