Featured Research

from universities, journals, and other organizations

Better Understanding Of Hurricane Trajectories Learned From Patterns On Soap Bubbles

Date:
April 15, 2008
Source:
CNRS
Summary:
Researchers have discovered that vortices created in soap bubbles behave like real cyclones and hurricanes in the atmosphere. Soap bubbles have enabled the researchers to characterize for the first time the random factor that governs the movement and paths of vortices.

Thermal convection bubble with a large vortex in the upper part of the image.
Credit: Copyright American Physical Society

Researchers at the Centre de Physique Moléculaire Optique et Hertzienne (CPMOH) (CNRS/Université Bordeaux (1) and the Université de la Réunion(1) have discovered that vortices created in soap bubbles behave like real cyclones and hurricanes in the atmosphere. Soap bubbles have enabled the researchers to characterize for the first time the random factor that governs the movement and paths of vortices. These results, published in the journal Physical Review Letters, could lead to a better understanding of such increasingly common and often devastating atmospheric phenomena.

Related Articles


A soap bubble is an ideal model for studying the atmosphere because it has analogous physical properties and, like the atmosphere, it is composed of a very thin film in relation to its diameter(2). In this experiment, the researchers created a half soap bubble that they heated at the “equator” and then cooled at the “poles”, thereby creating a single large vortex, similar to a hurricane, in the wall of the bubble. The researchers studied the movement of this vortex, which fluctuates in a random manner. This is characterized by a law known as a superdiffusive law(3), well known to physicists, but which had not until then been observed in the case of single vortices in a turbulent environment.

The disconcerting resemblance between vortices on soap bubbles and cyclones led the researchers to study their similarities. By analyzing in detail the trajectories of certain recent hurricanes such as Ivan, Jane, Nicholas, etc., the researchers measured the random factor that is always present in the movement of hurricanes. They then demonstrated the remarkable similarity of these fluctuations with those that characterize the disordered movement of the vortices that they created on soap bubbles.(4)

Taking this random factor into account in predicting the trajectory of hurricanes will be useful in anticipating the probability of impact on a given site or locality. Although the mean trajectory of hurricanes (without any fluctuations) is beginning to be well simulated by meteorologists, this random factor has, until now, been poorly understood. This discovery highlights a universality in the statistics of trajectory fluctuations and should make it possible in the future to better predict the behavior of hurricanes and anticipate the risks.

Notes :

1) Laboratoire de Génie Industriel.

2) The skin or film of soap is only several microns thick whereas the diameter of the bubble is around ten centimeters.

3) Law corresponding to a “Levy flight” random type movement, in other words a type of random walk dominated by several jumps of limited number but of large amplitude.

4) With a similar superdiffusive law.

Journal reference: Thermal convection and emergence of isolated vortices in soap bubbles, F. Seychelles, Y. Amarouchene, M. Bessafi*, and H. Kellay Université Bordeaux 1, CPMOH UMR 5798 du CNRS and * Université de la Réunion, Lab. de Génie Industriel. Physical Review Letters. April 7, 2008.


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Cite This Page:

CNRS. "Better Understanding Of Hurricane Trajectories Learned From Patterns On Soap Bubbles." ScienceDaily. ScienceDaily, 15 April 2008. <www.sciencedaily.com/releases/2008/04/080414214800.htm>.
CNRS. (2008, April 15). Better Understanding Of Hurricane Trajectories Learned From Patterns On Soap Bubbles. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2008/04/080414214800.htm
CNRS. "Better Understanding Of Hurricane Trajectories Learned From Patterns On Soap Bubbles." ScienceDaily. www.sciencedaily.com/releases/2008/04/080414214800.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) — Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) — The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins