Featured Research

from universities, journals, and other organizations

Drifting Star Discovered: Implications For Star And Planet Formation Theory

Date:
April 17, 2008
Source:
ESO
Summary:
By studying in great detail the 'ringing' of a planet-harboring star, a team of astronomers have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way.

Using HARPS on ESO's 3.6-m telescope at La Silla, astronomers were able to study in great detail the star Iota Horologii, known to harbour a giant planet, and make a very precise portrait of it: its temperature is 6150 K, its mass is 1.25 times that of the Sun, and its age is 625 million years. Moreover, the star is found to be more metal-rich than the Sun by about 50%. This means the star must have drifted from the Hyades cluster where it formed.
Credit: Digital Sky Survey/VirGO

By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way.

The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction.

Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99).

But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets.

"In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair.

The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior.

And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla.

Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes.

These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its temperature is 6150 K, its mass is 1.25 times that of the Sun, and its age is 625 million years. Moreover, the star is found to be more metal-rich than the Sun by about 50%.

These results show the power of asteroseismology when using a very precise instrument such as HARPS," says Vauclair. "It also shows that Iota Horologii has the same metal abundance and age as the Hyades cluster and this cannot be a coincidence."

The Hyades is an ensemble of stars that is seen with the unaided eye in the Northern constellation Taurus ("The Bull"). This open cluster, located 151 light-years away, contains stars that were formed together 625 million years ago.

The star Iota Horologii must have thus formed together with the stars of the Hyades cluster but must have slowly drifted away, being presently more than 130 light-years away from its original birthplace. This is an important result to understand how stars move on the galactic highways of the Milky Way.

This also means that the amount of metals present in the star is due to the original cloud from which it formed and not because it engulfed planetary material. "The chicken and egg question of whether the star got planets because it is metal-rich, or whether it is metal-rich because it made planets that were swallowed up is at least answered in one case," says Vauclair.

The astronomers' study is being published as a Letter to the Editor in Astronomy and Astrophysics ("The exoplanet-host star iota Horologii: an evaporated member of the primordial Hyades cluster", by S. Vauclair et al.). The team is composed of Sylvie Vauclair, Marion Laymand, Gérard Vauclair, Alain Hui Bon Hoa, and Stéphane Charpinet (LATT, Toulouse, France), François Bouchy (IAP, Paris, France), and Michaël Bazot (University of Porto, Portugal).


Story Source:

The above story is based on materials provided by ESO. Note: Materials may be edited for content and length.


Cite This Page:

ESO. "Drifting Star Discovered: Implications For Star And Planet Formation Theory." ScienceDaily. ScienceDaily, 17 April 2008. <www.sciencedaily.com/releases/2008/04/080415101016.htm>.
ESO. (2008, April 17). Drifting Star Discovered: Implications For Star And Planet Formation Theory. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2008/04/080415101016.htm
ESO. "Drifting Star Discovered: Implications For Star And Planet Formation Theory." ScienceDaily. www.sciencedaily.com/releases/2008/04/080415101016.htm (accessed July 22, 2014).

Share This




More Space & Time News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) — Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) — Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com
45 Years Later, Buzz Aldrin on Walking on Moon

45 Years Later, Buzz Aldrin on Walking on Moon

AP (July 18, 2014) — Forty-five years ago Sunday, Apollo 11's Neil Armstrong and Buzz Aldrin became the first humans to set foot on the moon. Speaking at the Intrepid Sea, Air & Space Museum, Aldrin described what he was thinking right before the historic walk. (July 18) Video provided by AP
Powered by NewsLook.com
Orbital Cargo Ship Reaches International Space Station

Orbital Cargo Ship Reaches International Space Station

AFP (July 16, 2014) — Orbital Sciences Corporation's unmanned cargo ship arrived Wednesday at the International Space Station carrying a load of food and equipment for the six-man crew at the research outpost. Duration: 00:33 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins