Featured Research

from universities, journals, and other organizations

Self-repairing Materials For Futuristic Buildings

Date:
April 18, 2008
Source:
Basque Research
Summary:
When a person suffers a minor wound, the human body reacts to close the opening, sending the blood platelets needed to the affected area -- and with no need in many cases for any external coagulant substance to be employed. This reaction of nature to damage suffered was the starting point for the development of self-repairing polymer materials with the capacity of recovering a good part of the properties lost and with no or with minimal external help.

Will the day come when cracks in buildings close up without external help and before they get to the stage where they cause damage to the component? This might appear utopia, but it already occurs in nature. When a person suffers a minor wound, the human body reacts to close the opening, sending the blood platelets needed to the affected area – and with no need in many cases for any external coagulant substance to be employed.

Related Articles


This reaction of nature to damage suffered was the starting point for the development of self-repairing polymer materials with the capacity of recovering a good part of the properties lost and with no or with minimal external help. In the case of ceramics or metallic materials, progress is much slower, being limited to initial steps.

There are currently two notable self-repairing technologies in polymer materials: adhesives and thermal encapsulation.

As the name suggests, the first of these involves a series of "stores" of adhesive found distributed in the most homogenous manner possible throughout the material, so that when the crack reaches one of these nodes the adhesive is secreted, together with a catalyst, and the crack is closed and the material polymerised.

There are two variants within this line of technology, depending on whether adhesive-containing microcapsules or tubes filled with adhesive are employed.

INASMET-Tecnalia has worked on this line in a project undertaken for the AIRBUS, having managed to produce a series of microcapsules and distribute them in a polymeric resin. This was a fundamental step to finding out the difficulties that might arise in the encapsulation process.

The second method, developed by Bristol University, is a project for the ESA, is very similar. The difference lies in the use of tubes rather than microcapsules filled with adhesive.

The thermal method uses a different repair methodology. The material, developed by the University of Sheffield, is a polymeric matrix compound, reinforced with carbon fibres. The polymer matriz, in turn, is made of a solid solution of a thermoplastic polymer and another thermostable polymer.

The only restriction of the thermostable material is that it has to be suitable for incorporating these reinforcment fibres into it. The thermoplastic material has greater limitations, limiting it chances of being chosen for use, being highly dependant on the thermostable material used. In this case, when damage is detected, repair is carried out by heating the material with some device incorporated into it.

This heating is capable of raising the temperature above that of the fusion of the thermoplastic material which, as a result, melts and flows into the damaged areas so that the cracks are sealed and the component restored to its former condition. INASMET-Tecnalia has also worked in this field within the framework of the aforementioned project.

It should be underlined that the development of self-repairing materials is still at initial stages and there is a long way to go yet before reaching the desired goal. Nevertheless, the results obtained are encouraging.

Apart from participation in this project, INASMET-Tecnalia is working on a number of research lines related to the growing demand that is anticipated for self-repairing materials.


Story Source:

The above story is based on materials provided by Basque Research. Note: Materials may be edited for content and length.


Cite This Page:

Basque Research. "Self-repairing Materials For Futuristic Buildings." ScienceDaily. ScienceDaily, 18 April 2008. <www.sciencedaily.com/releases/2008/04/080417095916.htm>.
Basque Research. (2008, April 18). Self-repairing Materials For Futuristic Buildings. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2008/04/080417095916.htm
Basque Research. "Self-repairing Materials For Futuristic Buildings." ScienceDaily. www.sciencedaily.com/releases/2008/04/080417095916.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins