Featured Research

from universities, journals, and other organizations

How Nanocluster Contaminants Increase Risk Of Spreading Through Groundwater

Date:
April 21, 2008
Source:
DOE/Argonne National Laboratory
Summary:
For almost half a century, scientists have struggled with plutonium nanoclusters spreading further in groundwater than expected, increasing the risk of sickness in humans and animals. Scientists were able to finally discover and study the structure of plutonium nanoclusters.

For almost half a century, scientists have struggled with plutonium contamination spreading further in groundwater than expected, increasing the risk of sickness in humans and animals.

Related Articles


It was known nanometer sized clusters of plutonium oxide were the culprit, but no one had been able to study its structure or find a way to separate it from the groundwater.

Scientists at the U.S. Department of Energy's Argonne National Laboratory, in collaboration with researchers from the University of Notre Dame, were able to use high-energy X-rays from the Argonne Advanced Photon Source to finally discover and study the structure of plutonium nanoclusters.

"When plutonium forms into the clusters, its chemistry is completely different and no one has really been able to assess what it is, how to model it or how to separate it Argonne senior chemist Lynda Soderholm said. "People have known about and tried to understand the nanoclusters, but it was the modern analytical techniques and the APS that allowed us understand what it is."

The nanoclusters are made up of exactly 38 plutonium atoms and had almost no charge. Unlike stray plutonium ions, which carry a positive charge, they are not attracted to the electrons in plant life, minerals, etc. which stopped the ions' progression in the ground water.

Models have been based on the free-plutonium model, creating discrepancies between what is expected and reality. Soderholm said that with knowledge of the structure, scientists can now create better models to account for not only free-roaming plutonium ions, but also the nanoclusters.

The clusters also are a problem for plutonium remediation. The free ions are relatively easy to separate out from groundwater, but the clusters are difficult to remove.

"As we learn more, we will be able to model the nanoclusters and figure out how to break them apart," Soderholm said. "Once they are formed, they are very hard to get rid of."

Soderholm said other experiments have shown some clusters with different numbers of plutonium atoms and she plans to examine -- together with her collaborators S. Skanthakumar, Richard Wilson and Peter Burns of Argonne's Chemical Sciences and Engineering Division-- the unique electric and magnetic properties of the clusters.

Funding for the research was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.


Story Source:

The above story is based on materials provided by DOE/Argonne National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Argonne National Laboratory. "How Nanocluster Contaminants Increase Risk Of Spreading Through Groundwater." ScienceDaily. ScienceDaily, 21 April 2008. <www.sciencedaily.com/releases/2008/04/080417152019.htm>.
DOE/Argonne National Laboratory. (2008, April 21). How Nanocluster Contaminants Increase Risk Of Spreading Through Groundwater. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2008/04/080417152019.htm
DOE/Argonne National Laboratory. "How Nanocluster Contaminants Increase Risk Of Spreading Through Groundwater." ScienceDaily. www.sciencedaily.com/releases/2008/04/080417152019.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins