Featured Research

from universities, journals, and other organizations

Skating Beads Of Water: Chemists Reproduce The Rose's 'Petal Effect'

Date:
April 25, 2008
Source:
American Chemical Society
Summary:
The lotus flower is nature's "slip n' slide," where water beads skate along each petal's surface like liquid metal. Now, chemists reveal the ying to the lotus' frictionless yang: rose petals. Chemists have found the physical basis for the rose's ability to grip water droplets in place, even when the flower is upside down. This newly described "petal effect" could lead to unique new adhesive materials, coatings and fabrics.

Chemists have discovered how the rose is able to hold on to water droplets even when upside down. The finding could lead to new adhesive materials.
Credit: public-domain-photos.com

The lotus flower is nature's "slip n' slide," where water beads skate along each petal's surface like liquid metal. Now, chemists reveal the ying to the lotus' frictionless yang: rose petals. Chemists have found the physical basis for the rose's ability to grip water droplets in place, even when the flower is upside down. This newly described "petal effect" could lead to unique new adhesive materials, coatings and fabrics.

Related Articles


The study of biological microstructures has been an lively area of research, particularly in the design of biomimetic materials. But before the petal effect could be replicated in synthetic materials, an in-depth understanding of the rose's surface was needed.

Lin Feng and colleagues in China provide the first description of the microscale surface of roses, composed of arrays of tiny, fleshy projections called micropapillae. The micropapillae form a seal with water droplets, allowing them to cling to the surface of the rose petal. Using these new insights, Feng was able to create a synthetic rose petal surface with same properties.

"The simple duplication of petal surface provides us not only a theoretical explanation of the phenomenon but also an inspiration for the preparation of biomimetic polymer films, which should be of great biological and technological importance," says Feng.

The article "Petal Effect: A Superhydrophobic State with High Adhesive Force" is scheduled for the April 15 issue of ACS' Langmuir.

http://dx.doi.org/10.1021/la703821h


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "Skating Beads Of Water: Chemists Reproduce The Rose's 'Petal Effect'." ScienceDaily. ScienceDaily, 25 April 2008. <www.sciencedaily.com/releases/2008/04/080421091319.htm>.
American Chemical Society. (2008, April 25). Skating Beads Of Water: Chemists Reproduce The Rose's 'Petal Effect'. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2008/04/080421091319.htm
American Chemical Society. "Skating Beads Of Water: Chemists Reproduce The Rose's 'Petal Effect'." ScienceDaily. www.sciencedaily.com/releases/2008/04/080421091319.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Pilot Uses Full-Plane Parachute in Crash

Raw: Pilot Uses Full-Plane Parachute in Crash

AP (Jan. 26, 2015) A pilot en route to Hawaii crashed his single-engine plane into the Pacific Ocean Monday and escaped safely thanks to the use of a full-plane parachute. US Coast Guard video captures the dramatic landing. (Jan. 26) Video provided by AP
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins