Featured Research

from universities, journals, and other organizations

Brain's Reaction To Potent Hallucinogen Salvia Explored

Date:
April 28, 2008
Source:
DOE/Brookhaven National Laboratory
Summary:
Brain-imaging studies performed in animals provide researchers with clues about why an increasingly popular recreational drug that causes hallucinations and motor-function impairment in humans is abused. Using trace amounts of Salvia divinorum -- also known as "salvia," a Mexican mint plant -- scientists found that the drug's behavior in the brains of primates mimics the extremely fast and brief "high" observed in humans.

Brain-imaging studies performed in animals at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory provide researchers with clues about why an increasingly popular recreational drug that causes hallucinations and motor-function impairment in humans is abused. Using trace amounts of Salvia divinorum - also known as "salvia," a Mexican mint plant that can be smoked in the form of dried leaves or serum - Brookhaven scientists found that the drug's behavior in the brains of primates mimics the extremely fast and brief "high" observed in humans.

Related Articles


Quickly gaining popularity among teenagers and young adults, salvia is legal in most states, but is grabbing the attention of municipal lawmakers. Numerous states have placed controls on salvia or salvinorin A - the plant's active component - and others, including New York, are considering restrictions.

"This is probably one of the most potent hallucinogens known," said Brookhaven chemist Jacob Hooker, the lead author of the study, which is the first to look at how the drug travels through the brain. "It's really important that we study drugs like salvia and how they affect the brain in order to understand why they are abused and to investigate their medicinal relevance, both of which can inform policy makers."

Hooker and fellow researchers used positron emission tomography, or PET scanning, to watch the distribution of salvinorin A in the brains of anesthetized primates. In this technique, the scientists administer a radioactively labeled form of salvinorin A (at concentrations far below pharmacologically active doses) and use the PET scanner to track its site-specific concentrations in various brain regions.

Within 40 seconds of administration, the researchers found a peak concentration of salvinorin A in the brain - nearly 10 times faster than the rate at which cocaine enters the brain. About 16 minutes later, the drug was essentially gone. This pattern parallels the effects described by human users, who experience an almost immediate high that starts fading away within 5 to 10 minutes.

High concentrations of the drug were localized to the cerebellum and visual cortex, which are parts of the brain responsible for motor function and vision, respectively. Based on their results and published data from human use, the scientists estimate that just 10 micrograms of salvia in the brain is needed to cause psychoactive effects in humans.

Salvia doesn't cause the typical euphoric state associated with other hallucinogens like LSD, Hooker said. The drug targets a receptor that is known to modulate pain and could be important for therapies as far reaching as mood disorders.

"Most people don't find this class of drugs very pleasurable," Hooker said. "So perhaps the main draw or reason for its appeal relates to the rapid onset and short duration of its effects, which are incredibly unique. The kinetics are often as important as the abused drug itself."

The Brookhaven team plans to conduct further studies related to salvia's abuse potential. The scientists also hope to develop radioactive tracers that can better probe the brain receptors to which salvia binds. Such studies could possibly lead to therapies for chronic pain and mood disorders.

These results are now published online in the journal NeuroImage. This research was funded by the Office of Biological and Environmental Research within DOE's Office of Science. DOE has a long-standing interest in research on brain chemistry gained through brain-imaging studies. Brain-imaging techniques such as PET are a direct outgrowth of DOE's support of basic physics and chemistry research.


Story Source:

The above story is based on materials provided by DOE/Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Brookhaven National Laboratory. "Brain's Reaction To Potent Hallucinogen Salvia Explored." ScienceDaily. ScienceDaily, 28 April 2008. <www.sciencedaily.com/releases/2008/04/080428120701.htm>.
DOE/Brookhaven National Laboratory. (2008, April 28). Brain's Reaction To Potent Hallucinogen Salvia Explored. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2008/04/080428120701.htm
DOE/Brookhaven National Laboratory. "Brain's Reaction To Potent Hallucinogen Salvia Explored." ScienceDaily. www.sciencedaily.com/releases/2008/04/080428120701.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins