Featured Research

from universities, journals, and other organizations

Part Of Universe's Missing Matter Discovered By XMM-Newton X-Ray Observatory

Date:
May 7, 2008
Source:
European Space Agency
Summary:
ESA's orbiting X-ray observatory XMM-Newton has been used by a team of international astronomers to uncover part of the missing matter in the universe. Ten years ago, scientists predicted that about half of the missing 'ordinary' or normal matter made of atoms exists in the form of low-density gas, filling vast spaces between galaxies. But the low density of the gas hampered many attempts to detect it in the past. With XMM-Newton's high sensitivity, astronomers have discovered its hottest parts.

Composite optical and X-ray image of galaxy clusters Abell 222 and Abell 223. The cluster pair is connected by a filament permeated by hot X-ray emitting gas.
Credit: ESA/ XMM-Newton/ EPIC/ ESO (J. Dietrich)/ SRON (N. Werner)/ MPE (A. Finoguenov)

ESA’s orbiting X-ray observatory XMM-Newton has been used by a team of international astronomers to uncover part of the missing matter in the universe.

Ten years ago, scientists predicted that about half of the missing ‘ordinary’ or normal matter made of atoms exists in the form of low-density gas, filling vast spaces between galaxies.

All the matter in the universe is distributed in a web-like structure. At dense nodes of the cosmic web are clusters of galaxies, the largest objects in the universe. Astronomers suspected that the low-density gas permeates the filaments of the web.

The low density of the gas hampered many attempts to detect it in the past. With XMM-Newton’s high sensitivity, astronomers have discovered its hottest parts. The discovery will help them understand the evolution of the cosmic web.

Only about 5% of our universe is made of normal matter as we know it, consisting of protons and neutrons, or baryons, which along with electrons, form the building blocks of ordinary matter. The rest of our universe is composed of elusive dark matter (23%) and dark energy (72%).

Small as the percentage might be, half of the ordinary baryonic matter is unaccounted for. All the stars, galaxies and gas observable in the universe account for less than a half of all the baryons that should be around.

Scientists predicted that the gas would have a high temperature and so it would primarily emit low-energy X-rays. But its very low density made observation difficult.

Astronomers using XMM-Newton were observing a pair of galaxy clusters, Abell 222 and Abell 223, situated at a distance of 2300 million light-years from Earth, when the images and spectra of the system revealed a bridge of hot gas connecting the clusters.

"The hot gas that we see in this bridge or filament is probably the hottest and densest part of the diffuse gas in the cosmic web, believed to constitute about half the baryonic matter in the universe," says Norbert Werner from SRON Netherlands Institute for Space Research, leader of the team reporting the discovery.

“The discovery of the warmest of the missing baryons is important. That’s because various models exist and they all predict that the missing baryons are some form of warm gas, but the models tend to disagree about the extremes,” adds Alexis Finoguenov, a team member.

Even with XMM-Newton’s sensitivity, the discovery was only possible because the filament is along the line of sight, concentrating the emission from the entire filament in a small region of the sky. The discovery of this hot gas will help better understand the evolution of the cosmic web.

"This is only the beginning. To understand the distribution of the matter within the cosmic web, we have to see more systems like this one. And ultimately launch a dedicated space observatory to observe the cosmic web with a much higher sensitivity than possible with current missions. Our result allows to set up reliable requirements for those new missions." concludes Norbert Werner.

ESA’s XMM-Newton Project Scientist, Norbert Schartel, comments on the discovery, “This important breakthrough is great news for the mission. The gas has been detected after hard work and more importantly, we now know where to look for it. I expect many follow-up studies with XMM-Newton in the future targeting such highly promising regions in the sky.”


Story Source:

The above story is based on materials provided by European Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency. "Part Of Universe's Missing Matter Discovered By XMM-Newton X-Ray Observatory." ScienceDaily. ScienceDaily, 7 May 2008. <www.sciencedaily.com/releases/2008/05/080506194033.htm>.
European Space Agency. (2008, May 7). Part Of Universe's Missing Matter Discovered By XMM-Newton X-Ray Observatory. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2008/05/080506194033.htm
European Space Agency. "Part Of Universe's Missing Matter Discovered By XMM-Newton X-Ray Observatory." ScienceDaily. www.sciencedaily.com/releases/2008/05/080506194033.htm (accessed July 26, 2014).

Share This




More Space & Time News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins