Featured Research

from universities, journals, and other organizations

Disabling Mouse Enzyme Increases Fertility

Date:
May 19, 2008
Source:
Washington University School of Medicine
Summary:
Changing the sugars attached to a hormone produced in the pituitary gland increased fertility levels in mice nearly 50 percent. The change appears to alter a reproductive "thermostat," unveiling part of an intricate regulatory system that may one day be used to enhance human fertility.

Changing the sugars attached to a hormone produced in the pituitary gland increased fertility levels in mice nearly 50 percent, a research group at Washington University School of Medicine in St. Louis has found. The change appears to alter a reproductive "thermostat," unveiling part of an intricate regulatory system that may one day be used to enhance human fertility.

"To adjust for the right amount of key reproductive hormones such as estrogen and testosterone, we may someday alter the sugars that are added to this hormone or others like it," says the group's leader, Jacques Baenziger, M.D., Ph.D., professor of pathology and immunology and of cell biology and physiology.

Sugars are the most common addition to hormones and other proteins after they have been assembled from instructions in DNA. Nearly all proteins in the blood and on the surface of cells have sugars attached. Scientists believe sugar attachments modify and adapt proteins, enabling them to fill more than one job or changing the way they do their jobs in different contexts. But direct demonstration of such changes has been challenging.

Baenziger found a unique set of sugars consistently added to luteinizing hormone, which is part of a feedback loop between the pituitary, the reproductive organs and the liver. The loop cycles up and down over time, producing periodic peaks in other reproductive hormones and triggering regular events such as the ovaries' release of eggs.

For their study, Baenziger's laboratory genetically disabled one of the enzymes that attaches sugars to luteinizing hormone in mice. This enzyme isn't the only one to add sugars to the hormone, so the alteration changes the mix of sugars rather than eliminating them completely.

"Initially, we didn't seem to see much of a difference in the animals," Baenziger says. "But then someone came to me and said, 'We have too many animals. We're constantly weaning mice!'"

A closer look showed that the mice were having nearly 50 percent more pups than normal, and that the liver removed the altered hormone from the blood more slowly. In addition, female mice were maturing earlier, were always receptive to male overtures for mating and had a disrupted ovulatory cycle. Males had higher levels of testosterone and females had higher levels of estrogen. Surprisingly, the altered female mice were also better mothers: They ate their pups less often.

"One could speculate that fertility problems in some humans may be partly related to a defect somewhere in this very complicated regulatory system," says Baenziger. "They may have the wrong proportion of some of these sugars, or the receptors that clear the sugar-hormone combination from the blood might not bind as well."

Baenziger, who recently won a five-year, $3.3 million grant renewal from the National Cancer Institute, wants to learn more about the segments in the reproductive hormones that single them out for the addition of unique sugars. He hopes to use that information to search for other proteins that receive similar treatment.

"We know these systems for adding sugars are well-regulated, but we're just starting to get a sense for how they are controlled and how far-reaching their effects can be," he says. "I think we're going to see much more of this kind of alteration and regulation of protein properties via added sugars in many other important areas of biology."

Funding from the National Institutes of Health supported this research.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mi Y, Fiete D, Baenziger JU. Ablation of GalNAc-4-sulfotransferase-1 enhances reproduction by altering the carbohydrate structures of luteinizing hormone in mice. The Journal of Clinical Investigation, April 21, 2008. DOI: 10.1172/JCI32467 [link]

Cite This Page:

Washington University School of Medicine. "Disabling Mouse Enzyme Increases Fertility." ScienceDaily. ScienceDaily, 19 May 2008. <www.sciencedaily.com/releases/2008/05/080516115811.htm>.
Washington University School of Medicine. (2008, May 19). Disabling Mouse Enzyme Increases Fertility. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2008/05/080516115811.htm
Washington University School of Medicine. "Disabling Mouse Enzyme Increases Fertility." ScienceDaily. www.sciencedaily.com/releases/2008/05/080516115811.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins