Featured Research

from universities, journals, and other organizations

Engineers Whip Up First Long-lived Nanoscale Bubbles

Date:
June 3, 2008
Source:
Harvard University
Summary:
With the aid of kitchen mixers, engineers at Harvard's School of Engineering and Applied Sciences have whipped up, for the first time, permanent nanoscale bubbles -- bubbles that endure for more than a year -- from batches of foam made from a mixture of glucose syrup, sucrose stearate and water. The microbubbles could significantly extend the lifetimes of common gas-liquid products that experience rapid disintegration, such as aerated personal-care products and contrast agents for ultrasound imaging.

Micrometer-size bubble covered with approximately 50 nm hexagons.
Credit: Courtesy of the Howard Stone Lab/Science Magazine

With the aid of kitchen mixers, engineers at Harvard's School of Engineering and Applied Sciences (SEAS) have whipped up, for the first time, permanent nanoscale bubbles -- bubbles that endure for more than a year -- from batches of foam made from a mixture of glucose syrup, sucrose stearate, and water. Their study appears in the May 30 issue of the journal Science.

Related Articles


The research, led by Howard A. Stone, had its origins in a conference talk on foams delivered by Dr. Rodney Bee, a retired Unilever physical chemist, in 2005. Bee, who had been researching ice cream for the food, beverage, and personal-care product company, was interested in finding ways to extend the life of foams and other gas-infused mixtures like ice cream. He had produced an unusual bubble formation in the course of his research, and he included a photograph of it in the presentation.

Stone, Vicky Joseph Professor of Engineering and Applied Mathematics and associate dean for applied physical sciences and engineering, was in the audience when Bee projected an image of a micrometer-size bubble with a distinctive polygonal geometry. The bubble surface appeared to be faceted with regular pentagonal, hexagonal, and heptagonal domains that intersected to form a soccer ball-like structure. None of the faces spanned more than 50 nanometers.

"Small bubbles on that scale never last because of surface tension -- they instantly disappear. What Rodney showed on that screen was extraordinary," said Stone. "It was impossible; we all thought it was impossible."

Smaller bubbles have a greater surface tension and a higher gas pressure than larger ones. As a result, larger bubbles usually grow at the expense of smaller ones, which have very short lifetimes.

"I asked him how he created his foams, and he said he used an ordinary kitchen mixer. The next day I went out and bought a kitchen mixer for the lab," explained Stone.

The experimental study, conducted by SEAS graduate student Emilie Dressaire in collaboration with Unilever colleagues, revealed that when the bubbles were covered with the chosen surfactant mixture, the surfactant molecules crystallized to form nearly impermeable shells over the bubble surfaces.

The resulting shells possessed an elasticity that allowed them to buckle over time into a remarkably regular and stable pattern. Measurements of the microbubbles' stability extended over more than a year, and the structural integrity of the bubbles held for the entire period.

The authors note that future applications of these microbubbles could significantly extend the lifetimes of common gas-liquid products that experience rapid disintegration, such as aerated personal-care products and contrast agents for ultrasound imaging.

Stone's co-authors are Dressaire and David C. Bell from SEAS and Bee and Alex Lips from Unilever Research and Development. The research was funded by Unilever.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Emilie Dressaire, Rodney Bee, David C. Bell, Alex Lips, and Howard A. Stone. Interfacial Polygonal Nanopatterning of Stable Microbubbles. Science, 2008; 320 (5880): 1198 DOI: 10.1126/science.1154601

Cite This Page:

Harvard University. "Engineers Whip Up First Long-lived Nanoscale Bubbles." ScienceDaily. ScienceDaily, 3 June 2008. <www.sciencedaily.com/releases/2008/05/080529141335.htm>.
Harvard University. (2008, June 3). Engineers Whip Up First Long-lived Nanoscale Bubbles. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2008/05/080529141335.htm
Harvard University. "Engineers Whip Up First Long-lived Nanoscale Bubbles." ScienceDaily. www.sciencedaily.com/releases/2008/05/080529141335.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins