Featured Research

from universities, journals, and other organizations

Engineers Whip Up First Long-lived Nanoscale Bubbles

Date:
June 3, 2008
Source:
Harvard University
Summary:
With the aid of kitchen mixers, engineers at Harvard's School of Engineering and Applied Sciences have whipped up, for the first time, permanent nanoscale bubbles -- bubbles that endure for more than a year -- from batches of foam made from a mixture of glucose syrup, sucrose stearate and water. The microbubbles could significantly extend the lifetimes of common gas-liquid products that experience rapid disintegration, such as aerated personal-care products and contrast agents for ultrasound imaging.

Micrometer-size bubble covered with approximately 50 nm hexagons.
Credit: Courtesy of the Howard Stone Lab/Science Magazine

With the aid of kitchen mixers, engineers at Harvard's School of Engineering and Applied Sciences (SEAS) have whipped up, for the first time, permanent nanoscale bubbles -- bubbles that endure for more than a year -- from batches of foam made from a mixture of glucose syrup, sucrose stearate, and water. Their study appears in the May 30 issue of the journal Science.

The research, led by Howard A. Stone, had its origins in a conference talk on foams delivered by Dr. Rodney Bee, a retired Unilever physical chemist, in 2005. Bee, who had been researching ice cream for the food, beverage, and personal-care product company, was interested in finding ways to extend the life of foams and other gas-infused mixtures like ice cream. He had produced an unusual bubble formation in the course of his research, and he included a photograph of it in the presentation.

Stone, Vicky Joseph Professor of Engineering and Applied Mathematics and associate dean for applied physical sciences and engineering, was in the audience when Bee projected an image of a micrometer-size bubble with a distinctive polygonal geometry. The bubble surface appeared to be faceted with regular pentagonal, hexagonal, and heptagonal domains that intersected to form a soccer ball-like structure. None of the faces spanned more than 50 nanometers.

"Small bubbles on that scale never last because of surface tension -- they instantly disappear. What Rodney showed on that screen was extraordinary," said Stone. "It was impossible; we all thought it was impossible."

Smaller bubbles have a greater surface tension and a higher gas pressure than larger ones. As a result, larger bubbles usually grow at the expense of smaller ones, which have very short lifetimes.

"I asked him how he created his foams, and he said he used an ordinary kitchen mixer. The next day I went out and bought a kitchen mixer for the lab," explained Stone.

The experimental study, conducted by SEAS graduate student Emilie Dressaire in collaboration with Unilever colleagues, revealed that when the bubbles were covered with the chosen surfactant mixture, the surfactant molecules crystallized to form nearly impermeable shells over the bubble surfaces.

The resulting shells possessed an elasticity that allowed them to buckle over time into a remarkably regular and stable pattern. Measurements of the microbubbles' stability extended over more than a year, and the structural integrity of the bubbles held for the entire period.

The authors note that future applications of these microbubbles could significantly extend the lifetimes of common gas-liquid products that experience rapid disintegration, such as aerated personal-care products and contrast agents for ultrasound imaging.

Stone's co-authors are Dressaire and David C. Bell from SEAS and Bee and Alex Lips from Unilever Research and Development. The research was funded by Unilever.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Emilie Dressaire, Rodney Bee, David C. Bell, Alex Lips, and Howard A. Stone. Interfacial Polygonal Nanopatterning of Stable Microbubbles. Science, 2008; 320 (5880): 1198 DOI: 10.1126/science.1154601

Cite This Page:

Harvard University. "Engineers Whip Up First Long-lived Nanoscale Bubbles." ScienceDaily. ScienceDaily, 3 June 2008. <www.sciencedaily.com/releases/2008/05/080529141335.htm>.
Harvard University. (2008, June 3). Engineers Whip Up First Long-lived Nanoscale Bubbles. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2008/05/080529141335.htm
Harvard University. "Engineers Whip Up First Long-lived Nanoscale Bubbles." ScienceDaily. www.sciencedaily.com/releases/2008/05/080529141335.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins