Featured Research

from universities, journals, and other organizations

Human Stem Cell Line Made Containing Sickle Cell Anemia Mutation

Date:
May 31, 2008
Source:
Johns Hopkins Medical Institutions
Summary:
Researchers at Johns Hopkins have established a human cell-based system for studying sickle cell anemia by reprogramming somatic cells to an embryonic stem cell like state. Publishing online on May 29, the team describes a faster and more efficient method of reprogramming cells that might speed the development of stem cell therapies.

Researchers at Johns Hopkins have established a human cell-based system for studying sickle cell anemia by reprogramming somatic cells to an embryonic stem cell like state. Researchers at Johns Hopkins have established a human cell-based system for studying sickle cell anemia by reprogramming somatic cells to an embryonic stem cell like state. Publishing online in Stem Cells on May 29, the team describes a faster and more efficient method of reprogramming cells that might speed the development of stem cell therapies.

"We hope our new cell lines can open the doors for researchers who study diseases like sickle cell anemia that are limited by the lack of good experimental models," says Linzhao Cheng, Ph.D., an associate professor of gynecology and obstetrics, medicine and oncology and a member of the Johns Hopkins Institute for Cell Engineering.

The research team first sought to improve previously established methods for reprogramming of adult cells into so-called induced pluripotent stem (iPS) cells, which look and behave similarly to embryonic stem cells and can differentiate into many different cell types. After testing several different genes, they were able to improve reprogramming efficiency by adding a viral protein known as SV40 large T antigen.

Using both fetal and adult human skin cells, the researchers introduced the four genes previously reported sufficient for cell reprogramming and compared the efficiency of reprogramming in the presence or absence of large T antigen. Without large T, cells form embryonic stem cell-like clusters in three to four weeks. With large T, the cells started looking like embryonic stem cells in just 12 to 14 days.

"Not only did T speed up reprogramming, we also found that it increases the total number of reprogrammed cells, which is great because often in reprogramming, not all cells go all the way," says Cheng, who explains that rigorous follow-up tests are required to determine if the reprogrammed cells really behave like pluripotent embryonic stem cells. "Many of them look right but they're probably just half cooked-like a boiled egg, you just can't tell the difference by looking at the outside," he says.

Having established a faster, more efficient method, the team then reprogrammed human cells that contain the mutation associated with sickle cell anemia. Embryonic stem cell-like clusters were visible 14 days after they initiated reprogramming and from these clusters the researchers established three different cell lines that both look and behave like human embryonic stem cells.

"One challenge to studying blood diseases like sickle cell anemia is that blood stem cells can't be kept alive for very long in the lab, so researchers need to keep returning to patients for more cells to study," says Cheng. "Having these new cell lines available might enable some bigger projects, like screening for potential drugs."

The research was funded by the National Institutes of Health and the Johns Hopkins Institute for Cell Engineering.

Authors on the paper are Prashant Mali, Zhaohui Ye, Holly Hammond, Xiaobing Yu, Jeffrey Lin, Guibin Chen, Jizhong Zou and Cheng, all of Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mali, Prashant , Ye, Zhaohui , Hommond, Holly H , Yu, Xiaobing , Lin, Jeff , Chen, Guibin , Zou, Jizhong , Cheng, Linzhao. Improved Efficiency and Pace of Generating Induced Pluripotent Stem Cells from Human Adult and Fetal Fibroblasts. Stem Cells, First published online May 29, 2008 DOI: 10.1634/stemcells.2008-0346

Cite This Page:

Johns Hopkins Medical Institutions. "Human Stem Cell Line Made Containing Sickle Cell Anemia Mutation." ScienceDaily. ScienceDaily, 31 May 2008. <www.sciencedaily.com/releases/2008/05/080529141341.htm>.
Johns Hopkins Medical Institutions. (2008, May 31). Human Stem Cell Line Made Containing Sickle Cell Anemia Mutation. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2008/05/080529141341.htm
Johns Hopkins Medical Institutions. "Human Stem Cell Line Made Containing Sickle Cell Anemia Mutation." ScienceDaily. www.sciencedaily.com/releases/2008/05/080529141341.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins