Featured Research

from universities, journals, and other organizations

New Approach To Treating Autoimmune Disease Developed

Date:
June 3, 2008
Source:
Weizmann Institute of Science
Summary:
Scientists have developed a new approach to treating such autoimmune diseases as irritable bowel syndrome using genetically-engineered regulatory T cells. This approach may be adapted to a number of autoimmune diseases, as it can be used treat the disease without knowing its exact cause.

In autoimmune diseases, the immune system turns against the body’s own tissues and organs, wreaking havoc and destruction for no apparent reason. Partly because the origins of these diseases are so obscure, no effective treatment exists, and the suffering they inflict is enormous. Now Weizmann Institute scientists have developed a method that in the future may make it possible to treat autoimmune diseases effectively without necessarily knowing their exact cause. Their approach is equivalent to sending a police force to suppress a riot without seeking out the individuals who instigated the unrest.

In healthy people, a small but crucial group of immune cells called regulatory T cells, or T-regs, keeps autoimmunity in check, but in people with inflammatory bowel disease (IBD), one of the most common autoimmune disorders, too few of these cells appear in the diseased intestine, and the ones that do fail to function properly. The new Weizmann Institute approach consists of delivering highly selective, genetically engineered functioning T-regs to the intestine. The study was conducted by Dr. Eran Elinav, a physician from Tel Aviv Sourasky Medical Center’s gastroenterology institute who is working toward his Ph.D. at the Weizmann Institute, and lab assistant Tova Waks, in the laboratory of Prof. Zelig Eshhar of the Immunology Department.

Relying on Eshhar’s earlier work in which he equipped a different type of T cell to zero in on cancerous tumors, the team genetically engineered T-regs, outfitting these cells with a modular receptor consisting of three units. One of these units directed the cells to the intestine while the other two made sure they became duly activated. As reported in the journal Gastroenterology, the approach proved effective in laboratory mice with a disease that simulates human IBD: Most of the mice treated with the genetically-engineered T-regs developed only mild inflammation or no inflammation at all.

The cells produced what the scientists called a 'bystander' effect: They were directed to the diseased tissue using neighboring, or 'bystander' markers that identified the area as a site of inflammation, and suppressed the inflammatory cells in the vicinity by secreting soluble suppressive substances.

The scientists are currently experimenting with human T-regs for curing ulcerative colitis and believe that in addition to IBD, their 'bystander' approach could work in other autoimmune disorders, even if their causes remain unknown. They also think the method could be valuable in suppressing unwanted inflammation in diseases unrelated to autoimmunity, as well as in preventing graft rejection and certain complications in bone marrow and organ transplantation, in which inflammation is believed to play a major role.

Prof. Zelig Eshhar’s research is supported by the M.D. Moross Institute for Cancer Research; the Phyllis and Joseph Gurwin Fund for Scientific Advancement; and the Friends of Assaf Harofeh Medical Center. Prof. Eshhar is the incumbent of the Marshall and Renette Ezralow Professorial Chair of Chemical and Cellular Immunology.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.


Story Source:

The above story is based on materials provided by Weizmann Institute of Science. Note: Materials may be edited for content and length.


Cite This Page:

Weizmann Institute of Science. "New Approach To Treating Autoimmune Disease Developed." ScienceDaily. ScienceDaily, 3 June 2008. <www.sciencedaily.com/releases/2008/06/080602103348.htm>.
Weizmann Institute of Science. (2008, June 3). New Approach To Treating Autoimmune Disease Developed. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2008/06/080602103348.htm
Weizmann Institute of Science. "New Approach To Treating Autoimmune Disease Developed." ScienceDaily. www.sciencedaily.com/releases/2008/06/080602103348.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins