Featured Research

from universities, journals, and other organizations

New Approach To Treating Autoimmune Disease Developed

Date:
June 3, 2008
Source:
Weizmann Institute of Science
Summary:
Scientists have developed a new approach to treating such autoimmune diseases as irritable bowel syndrome using genetically-engineered regulatory T cells. This approach may be adapted to a number of autoimmune diseases, as it can be used treat the disease without knowing its exact cause.

In autoimmune diseases, the immune system turns against the body’s own tissues and organs, wreaking havoc and destruction for no apparent reason. Partly because the origins of these diseases are so obscure, no effective treatment exists, and the suffering they inflict is enormous. Now Weizmann Institute scientists have developed a method that in the future may make it possible to treat autoimmune diseases effectively without necessarily knowing their exact cause. Their approach is equivalent to sending a police force to suppress a riot without seeking out the individuals who instigated the unrest.

In healthy people, a small but crucial group of immune cells called regulatory T cells, or T-regs, keeps autoimmunity in check, but in people with inflammatory bowel disease (IBD), one of the most common autoimmune disorders, too few of these cells appear in the diseased intestine, and the ones that do fail to function properly. The new Weizmann Institute approach consists of delivering highly selective, genetically engineered functioning T-regs to the intestine. The study was conducted by Dr. Eran Elinav, a physician from Tel Aviv Sourasky Medical Center’s gastroenterology institute who is working toward his Ph.D. at the Weizmann Institute, and lab assistant Tova Waks, in the laboratory of Prof. Zelig Eshhar of the Immunology Department.

Relying on Eshhar’s earlier work in which he equipped a different type of T cell to zero in on cancerous tumors, the team genetically engineered T-regs, outfitting these cells with a modular receptor consisting of three units. One of these units directed the cells to the intestine while the other two made sure they became duly activated. As reported in the journal Gastroenterology, the approach proved effective in laboratory mice with a disease that simulates human IBD: Most of the mice treated with the genetically-engineered T-regs developed only mild inflammation or no inflammation at all.

The cells produced what the scientists called a 'bystander' effect: They were directed to the diseased tissue using neighboring, or 'bystander' markers that identified the area as a site of inflammation, and suppressed the inflammatory cells in the vicinity by secreting soluble suppressive substances.

The scientists are currently experimenting with human T-regs for curing ulcerative colitis and believe that in addition to IBD, their 'bystander' approach could work in other autoimmune disorders, even if their causes remain unknown. They also think the method could be valuable in suppressing unwanted inflammation in diseases unrelated to autoimmunity, as well as in preventing graft rejection and certain complications in bone marrow and organ transplantation, in which inflammation is believed to play a major role.

Prof. Zelig Eshhar’s research is supported by the M.D. Moross Institute for Cancer Research; the Phyllis and Joseph Gurwin Fund for Scientific Advancement; and the Friends of Assaf Harofeh Medical Center. Prof. Eshhar is the incumbent of the Marshall and Renette Ezralow Professorial Chair of Chemical and Cellular Immunology.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.


Story Source:

The above story is based on materials provided by Weizmann Institute of Science. Note: Materials may be edited for content and length.


Cite This Page:

Weizmann Institute of Science. "New Approach To Treating Autoimmune Disease Developed." ScienceDaily. ScienceDaily, 3 June 2008. <www.sciencedaily.com/releases/2008/06/080602103348.htm>.
Weizmann Institute of Science. (2008, June 3). New Approach To Treating Autoimmune Disease Developed. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2008/06/080602103348.htm
Weizmann Institute of Science. "New Approach To Treating Autoimmune Disease Developed." ScienceDaily. www.sciencedaily.com/releases/2008/06/080602103348.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins