Featured Research

from universities, journals, and other organizations

Mountain Ranges Rise Much More Rapidly Than Geologists Expected

Date:
June 6, 2008
Source:
University of Rochester
Summary:
Mountains may experience a "growth spurt" that can double their heights in as little as two to four million years -- several times faster than the prevailing tectonic theory suggests.

Garzione high in the Andes, where she studies paleoelevation; the science of how mountains rise.
Credit: University of Rochester

Mountains may experience a "growth spurt" that can double their heights in as little as two to four million years--several times faster than the prevailing tectonic theory suggests.

In the June 5 issue of Science, Carmala Garzione, associate professor of geology at the University of Rochester, says this rapid uplift means the current theory of plate tectonics will have to be substantially modified to include a process called "delamination."

The traditional method of estimating mountain growth is through understanding the history of folding and faulting of the Earth's upper crust. Under this paradigm, geologist have estimated that Andes rose gradually over the past 40 million years.

Garzione and her collaborators, John M. Eiler, professor of geochemistry at California Institute of Technology, and Prosenjit Ghosh, assistant professor of atmospheric and oceanic sciences at the Indian Institute of Science in Bangalore, used recently developed techniques to measure how ancient rainfall and surface temperature altered the chemical composition of a mountain's soil. By studying sedimentary basins in the high Andes Mountains, the team could determine when and at what altitude these ancient sediments were deposited. That record of altitude changes shows that the Andes Mountains rose slowly for tens of millions of years, but then suddenly lifted much faster between 10 and 6 million years ago.

The work of one of Garzione's post-doctoral research fellows, Gregory D. Hoke, corroborates the swift-rise theory and shows that not just the mountains, but a broad region more than 350 miles wide rose to some degree with the Andes. In research soon to be published in the journal Earth and Planetary Science Letters, Hoke describes his findings on how rivers carved deep canyons into the flanks of the Andes as the mountain range rose. By dating the incisions and mapping the depth and extent of the canyons, Hoke shows that the surface uplift that occurred in the sedimentary basin where Garzione took her measurements must have happened across the entire width of the Andes Mountain range.

Garzione and her colleagues show that with the addition to their new findings, a broad range of geologic indicators, including the history of folding and faulting, erosion, volcanic eruptions, and sediment accumulation suggest a hotly debated tectonic process called delamination likely at work, says Garzione. Although delamination has been proposed for decades, Garzione says it has been controversial because mechanical models of mountain building have a hard time reproducing it, and, until the new findings, there has been a lack of reliable paleoelevation measurements.

When oceanic and continental plates come together, geologists believe the continental crust buckles. On the surface, the buckling manifests itself as a rising mountain range, but beneath the crust, the buckling creates a heavy, high-density "root" that holds the crust down like an anchor, says Garzione. Conventional tectonic theory says that convection of the fluid mantle deep in the Earth slowly erodes this heavy root like a stream wearing down a rock, allowing mountains to gradually rise as the crust shortens and thickens.

However, according to Garzione, the delamination theory suggests that instead of eroding slowly away, the root heats up and oozes downward like a drop of molasses until it abruptly breaks free and sinks into the hot fluid mantle. The mountains above, suddenly free of the weight of the blob, would rush upward and, in the case of the Andes, lift from a height of less than two kilometers to about four kilometers in less than 4 million years.

Some of the broader implications of rapidly-rising mountain ranges are their effect on regional climate and evolution, says Garzione. She is currently working with paleontologists, Darin A. Croft, assistant professor of anatomy at Case Western Reserve University, and Bruce MacFadden, vertebrate paleontology curator and professor at the University of Florida, to address some of the questions surrounding how a quick-rising mountain range might affect regional climate and faunal diversity in South America, in the late Miocene period when the Andes rose.

This research was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University of Rochester. "Mountain Ranges Rise Much More Rapidly Than Geologists Expected." ScienceDaily. ScienceDaily, 6 June 2008. <www.sciencedaily.com/releases/2008/06/080605150912.htm>.
University of Rochester. (2008, June 6). Mountain Ranges Rise Much More Rapidly Than Geologists Expected. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2008/06/080605150912.htm
University of Rochester. "Mountain Ranges Rise Much More Rapidly Than Geologists Expected." ScienceDaily. www.sciencedaily.com/releases/2008/06/080605150912.htm (accessed August 2, 2014).

Share This




More Earth & Climate News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pyrenees Orphan Bear Cub Gets Brand New Home

Pyrenees Orphan Bear Cub Gets Brand New Home

AFP (Aug. 1, 2014) The discovery of a bear cub in the Pyrenees mountains made headlines in April 2014. Despire several attempts to find the animal's mother, the cub remained alone. Now, the Pyrenees Conservation Foundation has constructed an enclosure. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Rare Whale Fossil Pulled from Calif. Backyard

Rare Whale Fossil Pulled from Calif. Backyard

AP (Aug. 1, 2014) A rare whale fossil has been pulled from a Southern California backyard. The 16- to 17-million-year-old baleen whale fossil is one of about 20 baleen whale fossils known to exist. (Aug. 1) Video provided by AP
Powered by NewsLook.com
Greenpeace Ship Arctic Sunrise Free to Leave Russia

Greenpeace Ship Arctic Sunrise Free to Leave Russia

AFP (Aug. 1, 2014) Greenpeace's ship Arctic Sunrise, held in custody by the Russian authorities since September last year, has departed the Russian city of Murmansk en route for its home port of Amsterdam. Duration: 01:04 Video provided by AFP
Powered by NewsLook.com
Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins