Featured Research

from universities, journals, and other organizations

Stripes Key To Nanoparticle Drug Delivery

Date:
June 11, 2008
Source:
Massachusetts Institute of Technology
Summary:
In work that could at the same time impact the delivery of drugs and explain a biological mystery, engineers have created the first synthetic nanoparticles that can penetrate a cell without poking a hole in its protective membrane and killing it.

MIT researchers have created 'striped' nanoparticles capable of entering a cell without rupturing it. In the background of this cartoon are cells that have taken up nanoparticles carrying fluorescent imaging agents
Credit: Image courtesy / Francesco Stellacci, Darrell Irvine and colleagues, MIT

In work that could at the same time impact the delivery of drugs and explain a biological mystery, MIT engineers have created the first synthetic nanoparticles that can penetrate a cell without poking a hole in its protective membrane and killing it.

The key to their approach? Stripes.

The team found that gold nanoparticles coated with alternating bands of two different kinds of molecules can quickly pass into cells without harming them, while those randomly coated with the same materials cannot. The research was reported in a recent advance online publication of Nature Materials.

"We've created the first fully synthetic material that can pass through a cell membrane without rupturing it, and we've found that order on the nanometer scale is necessary to provide this property," said Francesco Stellacci, an associate professor in the Department of Materials Science and Engineering and co-leader of the work with Darrell Irvine, the Eugene Bell Career Development Associate Professor of Tissue Engineering.

In addition to the practical applications of such nanoparticles for drug delivery and more--the MIT team used them to deliver fluorescent imaging agents to cells--the tiny spheres could help explain how some biological materials such as peptides are able to enter cells.

"No one understands how these biologically derived cell-penetrating materials work," said Irvine. "So we could use the new particles to learn more about their biological counterparts. Could they be analogues of the biological system?"

When a cell membrane recognizes a foreign object such as a nanoparticle, it normally wraps around or "eats" it, encasing the object in a smaller bubble inside the cell that can eventually be excreted. Any drugs or other agents attached to the nanoparticle therefore never reach the main fluid section of the cell, or cytosol, where they could have an effect.

Such nanoparticles can also be "chaperoned" by biological molecules into the cytosol, but this too has drawbacks. Chaperones can work in some cells but not others, and carry one cargo but not another.

Hence the importance of the MIT work in developing nanoparticles that can directly penetrate the cell membrane, deliver their cargo to the cytosol, and do so without killing the cell.

Irvine compares the feat to a phenomenon kids can discover. "If you have a soap film and you poke it with a bubble wand, you'll pop it," he said. "But if you coat the bubble wand with soap before poking the film, it will pass through the film without popping it because it's coated with the same material." Stellacci notes that the coated nanoparticles have properties similar to the cell membrane--not identical--but the analogy is still apt.

Stellacci first reported the creation of the striped nanoparticles in a 2004 Nature Materials paper. At the time, "we noticed that they interacted with proteins in an interesting way," he said. "Could they also have interesting interactions with cells?" Four years later, he and his colleagues report a resounding "yes."

Stellacci and Irvine's coauthors are Ayush Verma, Oktay Uzun, Ying Hu and Suelin Chen of the Department of Materials Science and Engineering (MSE); Yuhua Hu of the Department of Chemical Engineering; Hee-Sun Han of the Department of Chemistry, and Nicky Watson of the Department of Biology.

Irvine has appointments in the Department of Biological Engineering and MSE, and is a member of the David H. Koch Institute for Integrative Cancer Research at MIT. He was recently named a Howard Hughes Medical Institute investigator.

The research was funded in part by the NSF, the NIH and the Packard Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Stripes Key To Nanoparticle Drug Delivery." ScienceDaily. ScienceDaily, 11 June 2008. <www.sciencedaily.com/releases/2008/06/080609112254.htm>.
Massachusetts Institute of Technology. (2008, June 11). Stripes Key To Nanoparticle Drug Delivery. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/06/080609112254.htm
Massachusetts Institute of Technology. "Stripes Key To Nanoparticle Drug Delivery." ScienceDaily. www.sciencedaily.com/releases/2008/06/080609112254.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins