Featured Research

from universities, journals, and other organizations

Fossils Found In Tibet Revise History Of Elevation, Climate

Date:
June 12, 2008
Source:
Florida State University
Summary:
About 15,000 feet up on Tibet's desolate Himalayan-Tibetan Plateau, an international research team was surprised to find thick layers of ancient lake sediment filled with plant, fish and animal fossils typical of far lower elevations and warmer, wetter climates.

Kunlun Mountain Pass Basin, Tibetan Plateau
Credit: Courtesy of Associate Professor Yang Wang, Florida State University Department of Geological Sciences

About 15,000 feet up on Tibet's desolate Himalayan-Tibetan Plateau, an international research team led by Florida State University geologist Yang Wang was surprised to find thick layers of ancient lake sediment filled with plant, fish and animal fossils typical of far lower elevations and warmer, wetter climates.

Back at the FSU-based National High Magnetic Field Laboratory, analysis of carbon and oxygen isotopes in the fossils revealed the animals' diet (abundant plants) and the reason for their demise during the late Pliocene era in the region (a drastic climate change). Paleo-magnetic study determined the sample's age (a very young 2 or 3 million years old).

That fossil evidence from the rock desert and cold, treeless steppes that now comprise Earth's highest land mass suggests a literally groundbreaking possibility:

Major tectonic changes on the Tibetan Plateau may have caused it to attain its towering present-day elevations -- rendering it inhospitable to the plants and animals that once thrived there -- as recently as 2-3 million years ago, not millions of years earlier than that, as geologists have generally believed. The new evidence calls into question the validity of methods commonly used by scientists to reconstruct the past elevations of the region.

"Establishing an accurate history of tectonic and associated elevation changes in the region is important because uplift of the Tibetan Plateau has been suggested as a major driving mechanism of global climate change over the past 50-60 million years," said Yang, an associate professor in FSU's Department of Geological Sciences and a researcher at the National High Magnetic Field Laboratory. "What's more, the region also is thought to be important in driving the modern Asian monsoons, which control the environmental conditions over much of Asia, the most densely populated region on Earth."

Yang co-authored the paper with paleontologists from the Department of Vertebrate Paleontology at the Natural History Museum of Los Angeles County, and the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (Beijing). The collaborative research project, which since 2004 has featured summer field study on the remote Tibetan Plateau, is funded by a grant from the Sedimentary Geology and Paleobiology Program of the U.S. National Science Foundation.

"The uplift chronology of the Tibetan Plateau and its climatic and biotic consequences have been a matter of much debate and speculation because most of Tibet's spectacular mountains, gorges and glaciers remain barely touched by man and geologically unexplored," Yang said.

"So far, my research colleagues and I have only worked in two basins in Tibet, representing a very small fraction of the Plateau, but it is very exciting that our work to-date has yielded surprising results that are inconsistent with the popular view of Tibetan uplift," she said.

This summer, Yang and her colleagues from Los Angeles and Beijing will conduct further fieldwork in areas near the Tibetan Plateau. "The next phase of our work will focus on examining the spatial and temporal patterns of long-term vegetative and environmental changes in and around the region," she said. "Such records are crucial for clarifying the linkages among climatic, biotic and tectonic changes."

There is much still to learn and understand about those changes.

"Many of the places we've visited in Tibet are now deserts, and yet we found those thick deposits of lake sediments with abundant fossil fish and shells," Yang said. "This begs the question: What came first and caused the disappearance of those lakes? Global climate change? Or, tectonic change?"


Story Source:

The above story is based on materials provided by Florida State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: Paleoclimatic and paleoelevation implications. Earth and Planetary Science Letters, June 15, 2008

Cite This Page:

Florida State University. "Fossils Found In Tibet Revise History Of Elevation, Climate." ScienceDaily. ScienceDaily, 12 June 2008. <www.sciencedaily.com/releases/2008/06/080611144021.htm>.
Florida State University. (2008, June 12). Fossils Found In Tibet Revise History Of Elevation, Climate. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/06/080611144021.htm
Florida State University. "Fossils Found In Tibet Revise History Of Elevation, Climate." ScienceDaily. www.sciencedaily.com/releases/2008/06/080611144021.htm (accessed July 31, 2014).

Share This




More Fossils & Ruins News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
London's Famed 'Gherkin' Goes on Sale for 650 Mln

London's Famed 'Gherkin' Goes on Sale for 650 Mln

AFP (July 29, 2014) London's "Gherkin" office tower, one of the landmarks on the British capital's skyline, went on sale for about 650 million ($1.1 billion, 820 million euros) on Tuesday after being placed into receivership. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Tourists Disappointed to Find Rome Attractions Under Restoration

Tourists Disappointed to Find Rome Attractions Under Restoration

AFP (July 26, 2014) Tourists visiting Italy at the peak of the summer season are disappointed to find some of Rome's most famous attractions being restored and offering limited access. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins