Featured Research

from universities, journals, and other organizations

'Nanoglassblowing' Seen As Boon To Study Of Individual Molecules

Date:
June 17, 2008
Source:
National Institute of Standards and Technology
Summary:
Researchers have developed a new fabrication technique called 'nanoglassblowing' that creates nanoscale fluidic devices to isolate and study single molecules in solution, including individual DNA strands.

Schematic of a T-junction nanofluidic device with a "nanoglassblown" funnel-shaped entrance to a nanochannel. The funnel tapers down to 150 micrometers (about the diameter of a human hair) at the nanochannel entrance. Right: Photomicrograph of the T-junction with the first section of the nanochannel visible at the bottom. The colors are a white light interference pattern caused by the changing depth of the curved glass funnel.
Credit: Elizabeth Strychalski, Cornell University

While the results may not rival the artistry of glassblowers in Europe and Latin America, researchers at the National Institute of Standards and Technology (NIST) and Cornell University have found beauty in a new fabrication technique called "nanoglassblowing" that creates nanoscale (billionth of a meter) fluidic devices used to isolate and study single molecules in solution--including individual DNA strands. The novel method is described in a paper in the journal Nanotechnology.

Traditionally, glass micro- and nanofluidic devices are fabricated by etching tiny channels into a glass wafer with the same lithographic procedures used to manufacture circuit patterns on semiconductor computer chips. The planar (flat-edged) rectangular canals are topped with a glass cover that is annealed (heated until it bonds permanently) into place. About a year ago, the authors of the Nanotechnology paper observed that in some cases, the heat of the annealing furnace caused air trapped in the channel to expand the glass cover into a curved shape, much like glassblowers use heated air to add roundness to their work. The researchers looked for ways to exploit this phenomenon and learned that they could easily control the amount of "blowing out" that occurred over several orders of magnitude.

As a result, the researchers were able to create devices with "funnels" many micrometers wide and about a micrometer deep that tapered down to nanochannels with depths as shallow as 7 nanometers--approximately 1,000 times smaller in diameter than a red blood cell. The nanoglassblown chambers soon showed distinct advantages over their planar predecessors.

"In the past, for example, it was difficult to get single strands of DNA into a nanofluidic device for study because DNA in solution balls up and tends to bounce off the sharp edges of planar channels with depths smaller than the ball," says Cornell's Elizabeth Strychalski. "The gradually dwindling size of the funnel-shaped entrance to our channel stretches the DNA out as it flows in with less resistance, making it easier to assess the properties of the DNA," adds NIST's Samuel Stavis.

Future nanoglassblown devices, the researchers say, could be fabricated to help sort DNA strands of different sizes or as part of a device to identify the base-pair components of single strands. Other potential applications of the technique include the manufacture of optofluidic elements--lenses or waveguides that could change how light is moved around a microchip--and rounded chambers in which single cells could be confined and held for culturing.

This work was supported in part by Cornell's Nanobiotechnology Center, part of the National Science Foundation's Science and Technology Center Program. It was performed while Samuel Stavis held a National Research Council Research Associateship Award at NIST.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. E.A. Strychalski, S.M. Stavis and H.G. Craighead. Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing. Nanotechnology, Online week of June 8, 2008

Cite This Page:

National Institute of Standards and Technology. "'Nanoglassblowing' Seen As Boon To Study Of Individual Molecules." ScienceDaily. ScienceDaily, 17 June 2008. <www.sciencedaily.com/releases/2008/06/080612100445.htm>.
National Institute of Standards and Technology. (2008, June 17). 'Nanoglassblowing' Seen As Boon To Study Of Individual Molecules. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2008/06/080612100445.htm
National Institute of Standards and Technology. "'Nanoglassblowing' Seen As Boon To Study Of Individual Molecules." ScienceDaily. www.sciencedaily.com/releases/2008/06/080612100445.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins