Featured Research

from universities, journals, and other organizations

New Therapy Shows Promise For Fighting Treatment-resistant Cancer Cells

Date:
June 18, 2008
Source:
Society of Nuclear Medicine
Summary:
There is a real possibility for treating the most challenging cancer cases, say researchers. A gene radiotherapy system that detects and treats cancer cells that are resistant to traditional forms of chemotherapy and radiation showed success in the laboratory and could eventually prove beneficial for cancer patients. The new system targets oxygen-deficient hypoxic cancer cells that have activated a gene known as HIF-1, which ensures the cells' survival and makes them unresponsive to most current treatments.

A gene radiotherapy system that detects and treats cancer cells that are resistant to traditional forms of chemotherapy and radiation showed success in the laboratory and could eventually prove beneficial for cancer patients, according to researchers at SNM's 55th Annual Meeting. The new system targets oxygen-deficient hypoxic cancer cells that have activated a gene known as HIF-1, which ensures the cells' survival and makes them unresponsive to most current treatments.

Related Articles


"These types of cancer cells pose a significant challenge in treating many patients," said June-key Chung, a professor of nuclear medicine at Seoul National University College of Medicine, Seoul, South Korea, and lead researcher of the study, Human NIS Gene Radiotherapy Targeting HIF-1 Activated Cancer Cells. "Our research shows that this system successfully targets these hard-to-treat cells in vitro. Eventually, it could offer a novel way to develop new therapies for drug- and radiation-resistant cancers."

Hypoxic cancer cells are found in solid tumors that develop in many different cancers, including cancers of the liver, breast, prostate and uterus. Solid tumors undergo a multitude of cytogenetic or genetic changes over many years, some of which may resist almost any standard therapy.

"It is well known that hypoxic cancer cells are resistant to chemotherapy and radiotherapy, therefore creating a real dilemma for cancer therapies," said Chung. "Now, we are hopeful that new therapeutic models targeting resistant cancers, which are currently under development in the laboratory, can be successfully used for treatment. The results of our research imply that this is a real possibility."

Hypoxic cancer cells do not develop adequate blood vessels to receive oxygen. Because cells need oxygen to survive, hypoxic cells instead activate the HIF-1 protein, which changes cells' metabolism and enables them to burn sugar for energy without oxygen. Traditional cancer therapies are ineffective against hypoxic cells that have activated HIF-1 because HIF-1 regulates several genes related to the resistance of conventional cancer therapy.

In their research, Chung and his team developed a therapeutic system that targets HIF-1 human liver cancer cells in the laboratory. A reporter gene was developed that would express human sodium iodide symporter (hNIS) in the cancer cells. This gene would simultaneously track the cancer cells and treat them by allowing them to absorb iodine and radioisotope more easily.

To improve imaging of the cancer cells even further, researchers also engineered the reporter gene to turn fluorescent when it encountered HIF-1 liver cancer cells so they could be tracked with optical imaging techniques. The reporter gene was then injected into human liver cancer cells. The results indicated that the system not only killed hypoxic liver cancer cells, but also could eventually be useful for visualizing how HIF-1 activation occurs in these cells.

Chung and Chan Joo Yeom, a graduate student of his team, will be presented with the SNM Molecular Imaging Center of Excellence (MICoE) Abstract Award for their work. The award will be presented at the MICoE business center meeting and luncheon on Monday, June 16, from 11:30 a.m.x:30 p.m. in Room 223 of the Ernest N. Morial Convention Center by MICoE President Martin Pomper, M.D., Ph.D.

Scientific Paper 105: C. Yeom, J. Chung, K. Kang, J. Jeong, D. Lee, M. Lee, Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea, "Human NIS Gene Radiotherapy Targeting for HIF-1 Activated Cancer Cells," SNM's 55th Annual Meeting, June 14-18, 2008.


Story Source:

The above story is based on materials provided by Society of Nuclear Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Society of Nuclear Medicine. "New Therapy Shows Promise For Fighting Treatment-resistant Cancer Cells." ScienceDaily. ScienceDaily, 18 June 2008. <www.sciencedaily.com/releases/2008/06/080616115828.htm>.
Society of Nuclear Medicine. (2008, June 18). New Therapy Shows Promise For Fighting Treatment-resistant Cancer Cells. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2008/06/080616115828.htm
Society of Nuclear Medicine. "New Therapy Shows Promise For Fighting Treatment-resistant Cancer Cells." ScienceDaily. www.sciencedaily.com/releases/2008/06/080616115828.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins