Featured Research

from universities, journals, and other organizations

Customized 'Wimpy' Polioviruses Designed: A New Path To Vaccines?

Date:
June 29, 2008
Source:
Stony Brook University Medical Center
Summary:
A team of molecular biologists and computer scientists at Stony Brook University has designed and synthesized a new class of weakened polioviruses. They used their synthesizing method with computer software to systematically re-code the poliovirus genome. In doing so, the team is the first to demonstrate that a synthetic weakened virus can immunize an animal. These results show promise in the creation of new attenuated ('live virus') anti-viral vaccines and are reported in the journal Science.

A team of molecular biologists and computer scientists at Stony Brook University has designed and synthesized a new class of weakened polioviruses. They used their synthesizing method with computer software to systematically re-code the poliovirus genome. In doing so, the team is the first to demonstrate that a synthetic weakened virus can immunize an animal. These results show promise in the creation of new attenuated (‘live virus’) anti-viral vaccines and are reported in the June 27 issue of Science.

Six years ago, Eckard Wimmer, Ph.D., Distinguished Professor, Department of Molecular Genetics and Microbiology at Stony Brook University, and colleagues synthesized and generated poliovirus, the first artificial synthesis of any virus. Dr. Wimmer and other scientists within the Department built on that finding in their recent work.

“Synthesizing the wild-type poliovirus was an essential and important first step toward our current research,” says Dr. Wimmer, noting that the new method involves impeding the synthesis of viral proteins, a new approach to developing attenuated vaccines. This type of vaccine is created by mutating the virus so it cannot cause disease. Generally, attenuated vaccines are easy to administer, inexpensive, and sometimes offer the best protection against disease.

“As all viruses depend on their host’s cellular machinery to produce their proteins, targeting the synthesis of viral proteins by the host may be universally applicable to creating weakened strains of other viruses,” says Steffen Mueller, Ph.D., Senior Author and Research Assistant Professor of Molecular Genetics and Microbiology, referring to the implications of the research results.

Because of the redundancy of the genetic code, there are an unimaginably large number of ways to encode any given protein. For poliovirus proteins, there are more possible encodings (10442) than atoms in the universe. Using a powerful computer algorithm, the team found particular re-codings of the genome predicted to weaken the virus.

The researchers made hundreds of small mutations in the genome that perfectly preserved the viral proteins but changed the way those proteins were encoded by RNA (ribonucleic acid), so that pairs of amino acids were added by transfer RNAs (tRNAs) that rarely work together in normal proteins. They call the process “Synthetic Attenuated Virus Engineering,” or “SAVE.” The resulting virus contains completely authentic, wild-type poliovirus proteins. However, each of the hundreds of mutations causes a tiny defect by creating an obstacle – a genetic “speed bump” – in translating the genetic code into a protein.

“Translation of this unusual genome into viral proteins was inefficient, and the most highly re-coded virus was weakened to the point where it was unable to infect cells,” says J. Robert Coleman, Lead Author and a graduate student in Molecular Genetics and Microbiology.

The reduced translational efficiency of these chimeric viruses reduced their ability to cause disease. The team injected mice with the re-coded polioviruses. Most mice showed no signs of disease but did produce anti-polio antibodies. These mice were then immune against infection by the normal, fully virulent poliovirus.

“Ultimately we created a wimpy poliovirus that can be customized and does not cause disease unless given at high doses,” explains Bruce Futcher, Ph.D., Co-author and Professor of Molecular Genetics and Microbiology. “These viruses are still far from suitable vaccines for humans, but there is a lot of potential for this approach,” continues Dr. Futcher. “A virus modified using ‘SAVE’ might act as a vaccine by providing immunity against the normal virus.”

The inclusion of computer programming essential to developing these synthetic polioviruses featured the work of Steven Skiena, Ph.D., Professor of Computer Science. Dr. Skiena, in collaboration with his graduate student Dimitris Papamichail, developed the sequence design algorithm.

“Sophisticated computer algorithms are necessary to design the hundreds of changes to sufficiently cripple the virus for our ‘death by a thousand cuts’ approach,” summarizes Dr. Skiena. “Because of the large number of changes, the weakened virus can never mutate back to wild-type.”

The research team hopes this “death by a thousand cuts” virus mutation strategy can be applicable to attenuating many kinds of viruses. They are looking into applications with other viruses.


Story Source:

The above story is based on materials provided by Stony Brook University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stony Brook University Medical Center. "Customized 'Wimpy' Polioviruses Designed: A New Path To Vaccines?." ScienceDaily. ScienceDaily, 29 June 2008. <www.sciencedaily.com/releases/2008/06/080626144020.htm>.
Stony Brook University Medical Center. (2008, June 29). Customized 'Wimpy' Polioviruses Designed: A New Path To Vaccines?. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2008/06/080626144020.htm
Stony Brook University Medical Center. "Customized 'Wimpy' Polioviruses Designed: A New Path To Vaccines?." ScienceDaily. www.sciencedaily.com/releases/2008/06/080626144020.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins