Featured Research

from universities, journals, and other organizations

Promising Finding In Severe Lung Disease

Date:
June 30, 2008
Source:
University of Illinois at Chicago
Summary:
Researchers have identified a novel function for an enzyme that plays a role in the tissue injury in acute respiratory distress syndrome, also known as ARDS.

Researchers at the University of Illinois at Chicago have identified a novel function for an enzyme that plays a role in the tissue injury in acute respiratory distress syndrome, also known as ARDS.

Related Articles


The finding offers a new therapeutic target for the prevention and treatment of lung inflammation and injury. The research will be published in the journal Nature Immunology later this year and online June 29.

ARDS is an often fatal complication of bacterial infections, blood transfusions, overdoses of some medications, or traumatic injury. According to the National Heart, Lung, and Blood Institute, it affects nearly 150,000 people each year in the United States.

In ARDS, the lungs become swollen with water and protein, and breathing becomes impossible, leading to death in 30 percent to 40 percent of cases. There is no effective treatment.

It has previously been shown that the enzyme, called nonmuscle myosin light-chain kinase, or MYLK, plays a pivotal role in the disruption of the endothelial barrier -- a single thin layer of cells that line blood vessels -- which prevents water and protein from accumulating in tissues.

In addition to the disruption of the endothelial barrier and build-up of water in lungs in ARDS, a circulating blood cell, the neutrophil, "migrates into lung tissue and, when activated, can cause profound injury," said Jingsong Xu, assistant professor in pharmacology and dermatology and lead author of the paper.

Neutrophils are the most common type of white blood cells and are critical to what is called the innate immune response. They normally engulf and destroy invading bacteria and fungi and act as the first line of immune system defense.

In acute respiratory distress syndrome, they misfire and attack healthy tissue.

"Although there have been many studies into how MYLK disrupts the endothelial barrier, no one has investigated how MYLK functions to regulate the neutrophil transmigration into tissues," said Xu. "We decided to look at this."

The researchers found that MYLK was essential to the movement of neutrophils through the endothelial barrier. It unleashes a cascade of molecular events inside the neutrophil that changes the cell's shape, which is necessary for adhesion and migration.

"To our surprise, the pathway was a completely novel one that did not involve the well-studied and expected target of (the enzyme)," Xu said.

The unexpected finding of a novel pathway "opens up a completely new set of possible therapeutic targets for the prevention and treatment of this deadly disease," said Dr. Asrar Malik, distinguished professor, head of pharmacology and co-author on the paper.

The study was supported by grants from National Institutes of Health. Xiao-Pei Gao, Ram Ramchandran, You-Yang Zhao and Stephen Vogel of UIC's department of pharmacology also contributed to the study.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Chicago. "Promising Finding In Severe Lung Disease." ScienceDaily. ScienceDaily, 30 June 2008. <www.sciencedaily.com/releases/2008/06/080629130748.htm>.
University of Illinois at Chicago. (2008, June 30). Promising Finding In Severe Lung Disease. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/06/080629130748.htm
University of Illinois at Chicago. "Promising Finding In Severe Lung Disease." ScienceDaily. www.sciencedaily.com/releases/2008/06/080629130748.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins