Featured Research

from universities, journals, and other organizations

New Wind Measurement Technology May Help Olympic Sailing, Aviation and Weather Forecasting

Date:
July 3, 2008
Source:
American Institute of Physics
Summary:
A team of researchers at the Ocean University of China has developed and tested a mobile lidar (light detection and ranging) station that can accurately measure wind speed and direction over large areas in real time -- an application useful for aviation safety, weather forecasting and sports.

Laser sailboat race. The new mobile lidar station can measure wind fields more accurately, which could help world-class athletes compete in international competitions, such as the Olympics.
Credit: iStockphoto

A team of researchers at the Ocean University of China has developed and tested a mobile lidar (light detection and ranging) station that can accurately measure wind speed and direction over large areas in real time -- an application useful for aviation safety, weather forecasting and sports.

The mobile lidar station can measure wind fields more accurately, which could help world-class athletes compete in international competitions, such as the Olympics. Ocean University is in Qingdao, which is hosting the sailing competitions of the XXIX Olympic Games and the Beijing 2008 Paralympic Games, and this technique is being tested in conjunction with the event.

"Wind is non-uniform even in a small sailing field," says Professor Zhi-Shen Liu of the Key Laboratory of Ocean Remote Sensing, Ministry of Education of China, Ocean University of China, who led the research. "Athletes could maximize their performances if they have the most accurate information to help them capture the wind."

In Olympic sailing, individual competitors or teams of athletes sail various classes of sailboats in timed trials over a single course. The contest requires them to navigate upwind, downwind and everything in between. Their final time depends on numerous factors, including the boat design, the skill of the sailors, course difficulty and ocean currents. Perhaps the most important factor, though, is how well the athletes can harness the wind that fills their sails.

Because wind constantly changes speed and direction, athletes and coaches hope to have the best information at the start of a run. On cloudy, rainy days, the standard meteorological tool of Doppler radar can accurately provide wind field information. When no clouds are present, however, Doppler radar is ineffective. The best wind data on clear days comes from ocean buoys and land stations that use wind cups and ultrasonic anemometers to measure wind speed.

In the Qingdao sailing area, where this summer's competitions will take place, only four buoys, one boat and one tower are available to measure sea surface winds within a competition area of approximately 10 square kilometers.

Liu and his lidar group, composed of research scientists and graduate students, have been working with an optical remote sensing technology called Doppler lidar, which they are applying for weather and environmental research. Lidar works by scattering laser beams off atmospheric aerosols or molecules. Doppler lidar takes advantage of the fact that when these aerosols or molecules are moving in the wind, the scattered laser light changes frequency -- the same way an approaching car has a higher pitched sound than a car driving away.

The advantage of Doppler lidar, says Liu, is that it can quickly sample a large area, providing a much finer map of winds than buoys alone. He and his group have developed a lidar bus, which can move equipment to the experiment field conveniently.

Last year, they successfully tested their new bus at the 2007 Qingdao International Regatta sailing event. They moved the bus to the seashore near the sailing field, and made a horizontal scan over the sea surface, making the measurement in real time and then uploading the data to the local meteorological station every 10 minutes. They envision a similar effort in the upcoming Olympic and Paralympic games.

The research was funded by the National Natural Science Foundation of China, the Key Laboratory of Ocean Remote Sensing, the Ministry of Education of China and the China Meteorological Administration (CMA).


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Liu et al. High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements. Optics Letters, 2008; 33 (13): 1485 DOI: 10.1364/OL.33.001485

Cite This Page:

American Institute of Physics. "New Wind Measurement Technology May Help Olympic Sailing, Aviation and Weather Forecasting." ScienceDaily. ScienceDaily, 3 July 2008. <www.sciencedaily.com/releases/2008/06/080630104637.htm>.
American Institute of Physics. (2008, July 3). New Wind Measurement Technology May Help Olympic Sailing, Aviation and Weather Forecasting. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2008/06/080630104637.htm
American Institute of Physics. "New Wind Measurement Technology May Help Olympic Sailing, Aviation and Weather Forecasting." ScienceDaily. www.sciencedaily.com/releases/2008/06/080630104637.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins