Featured Research

from universities, journals, and other organizations

Migraine Mutations Reveal Clues To Biological Basis Of Disorder

Date:
July 1, 2008
Source:
Vanderbilt University Medical Center
Summary:
By studying a rare, inherited form of migraine, researchers at Vanderbilt University Medical Center have found clues to the biological basis of the painful, debilitating disorder.

Fifteen percent to 20 percent of people worldwide suffer from migraines -- excruciating headaches often presaged by dramatic sensations, or "auras." By studying a rare, inherited form of migraine, researchers at Vanderbilt University Medical Center have found clues to the biological basis of the painful, debilitating disorder.

Related Articles


In the Proceedings of the National Academy of Sciences, Alfred George Jr., M.D., and colleagues report that genetic mutations linked to this rare form of familial migraine alter the function of sodium channels -- protein "tunnels" through brain cell membranes involved in the electrical conduction of nerve impulses.

The findings identify cellular events that may prompt migraines -- specifically the aura that precedes them -- and suggest that medications targeting sodium channels might warrant a closer look as potential treatments for some forms of migraine.

George and colleagues investigated the physiological basis of a severe, inherited form of migraine called "familial hemiplegic migraine type-3" (FHM3). The aura associated with FHM3 often includes a transient weakness or paralysis of one side of the body.

FHM3 is caused by mutations in a sodium channel gene, SCN1A. Researchers in Europe had identified three mutations associated with the condition and contacted George about studying the cellular effects of these mutations.

"We were already studying this gene, SCN1A, in genetic forms of epilepsy," said George, the Grant W. Liddle Professor of Medicine, professor of Pharmacology, and the director of the Institute of Integrative Genomics. "This was a great opportunity to investigate the physiology of SCN1A mutants linked to another episodic neurological disorder."

George and colleagues genetically inserted the mutant sodium channels into cultured human cells and recorded the cells' electrical properties -- the key function modulated by sodium channels.

One mutant, called L1649Q, failed to generate any measurable current, indicating that this mutant caused a complete loss of function of the sodium channel.

The two other mutants -- L263V and Q1489K -- "work as sodium channels but are dysfunctional," George said. "They don't operate normally."

The mutations affected the opening and closing of the channel, a phenomenon known as "gating." Under normal situations, sodium channels are usually closed and open briefly to allow sodium to flow into the cell, which helps generate the electrical current conducted by the cell.

"These dysfunctional sodium channels tend to stay open too long, as if the gating mechanism is stuck," said George. "This problem may predispose neurons to fire more frequently."

The enhanced predisposition to nerve cell firing may be the spark that initiates the aura.

"The aura has been linked to a brain phenomenon known as 'cortical spreading depression,' which is essentially a wave of inexcitability that travels across the surface of the cortex (the brain's outer layer)," George explained.

"The dysfunctional channels probably aren't directly causing the headache. They're likely involved in causing cortical spreading depression, which then triggers other events ultimately culminating in the severe headache."

Although FHM3 is a rare form of migraine, the findings open up the possibility that more common types of migraine might involve dysfunctional sodium channels. George's team is continuing to study this in other cells and possibly in animal models.

The results also suggest a link between migraine and epilepsy, which often occur together.

"There's been evidence of some connection between migraine and epilepsy, but exactly how they're related is not clear," George said. "Now there's a gene involved in both. So maybe what we've learned here is that there can be a common genetic basis for epilepsy and migraine in some people."

Vanderbilt co-authors included Kristopher Kahlig, Ph.D., and Thomas Rhodes. This work was supported by National Institutes of Health and the Epilepsy Foundation.


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University Medical Center. "Migraine Mutations Reveal Clues To Biological Basis Of Disorder." ScienceDaily. ScienceDaily, 1 July 2008. <www.sciencedaily.com/releases/2008/06/080630173930.htm>.
Vanderbilt University Medical Center. (2008, July 1). Migraine Mutations Reveal Clues To Biological Basis Of Disorder. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2008/06/080630173930.htm
Vanderbilt University Medical Center. "Migraine Mutations Reveal Clues To Biological Basis Of Disorder." ScienceDaily. www.sciencedaily.com/releases/2008/06/080630173930.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) — Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins