Featured Research

from universities, journals, and other organizations

Quantum Dots Can Penetrate Skin Through Minor Abrasions

Date:
July 3, 2008
Source:
North Carolina State University
Summary:
Researchers have found that quantum dot nanoparticles can penetrate the skin if there is an abrasion, providing insight into potential workplace concerns for healthcare workers or individuals involved in the manufacturing of quantum dots or doing research on potential biomedical applications of the tiny nanoparticles.

Researchers at North Carolina State University have found that quantum dot nanoparticles can penetrate the skin if there is an abrasion, providing insight into potential workplace concerns for healthcare workers or individuals involved in the manufacturing of quantum dots or doing research on potential biomedical applications of the tiny nanoparticles.

Related Articles


While the study shows that quantum dots of different sizes, shapes and surface coatings do not penetrate rat skin unless there is an abrasion, it shows that even minor cuts or scratches could potentially allow these nanoparticles to penetrate deep into the viable dermal layer – or living part of the skin – and potentially reach the bloodstream.

Dr. Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State's College of Veterinary Medicine, tested the ability of the quantum dots to penetrate rat skin at 8 and 24 hour intervals. The experiment evaluated rat skin in various stages of distress – including healthy skin, skin that had been stripped using adhesive tape and skin that had been abraded by a rough surface. The researchers also assessed whether flexing the skin affected the quantum dots' ability to penetrate into the dermal layer. Monteiro-Riviere co-authored the study with doctoral student Leshuai Zhang.

While the study indicates that acute – or short-term – dermal exposure to quantum dots does not pose a risk of penetration (unless there is an abrasion), Monteiro-Riviere notes "there is still uncertainty on long-term exposure." Monteiro-Riviere explains that the nanoparticles may be able to penetrate skin if there is prolonged, repeated exposure, but so far no studies have been conducted to date to examine that possibility. Quantum dots are fluorescent nanoparticles that may be used to improve biomedical imaging, drug delivery and diagnostic testing.

This finding is of importance to risk assessment for nanoscale materials because it indicates that skin barrier alterations – such as wounds, scrapes, or dermatitis conditions – could affect nanoparticle penetration and that skin is a potential route of exposure and should not be overlooked.

The study found that the quantum dots did not penetrate even after flexing the skin, and that the nanoparticles only penetrated deep into the dermal layer when the skin was abraded. Although quantum dots are incredibly small, they are significantly larger than the fullerenes – or buckyballs – that Monteiro-Riviere showed in a 2007 study in Nano Letters can deeply and rapidly penetrate healthy skin when there is repetitive flexing of the skin.

Additionally, Monteiro-Riviere's laboratory previously showed quantum dots of different size, shape and surface coatings could penetrate into pig skin. The anatomical complexity of skin and species differences should be taken into consideration when selecting an animal model to study nanoparticle absorption/penetration. Human skin studies are also being conducted, but "it is important to investigate species differences and to determine an appropriate animal model to study nanoparticle penetration," Monteiro-Riviere says. "Not everyone can obtain fresh human skin for research."

Nanoparticles are generally defined as being smaller than 100 nanometers (thousands of times thinner than a human hair), and are expected to have widespread uses in medicine, consumer products and industrial processes.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhang et al. Assessment of Quantum Dot Penetration into Intact, Tape-Stripped, Abraded and Flexed Rat Skin. Skin Pharmacology and Physiology, 2008; 21 (3): 166 DOI: 10.1159/000131080

Cite This Page:

North Carolina State University. "Quantum Dots Can Penetrate Skin Through Minor Abrasions." ScienceDaily. ScienceDaily, 3 July 2008. <www.sciencedaily.com/releases/2008/07/080702103327.htm>.
North Carolina State University. (2008, July 3). Quantum Dots Can Penetrate Skin Through Minor Abrasions. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2008/07/080702103327.htm
North Carolina State University. "Quantum Dots Can Penetrate Skin Through Minor Abrasions." ScienceDaily. www.sciencedaily.com/releases/2008/07/080702103327.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins