Featured Research

from universities, journals, and other organizations

Deep Brain Pacemaker Offers Hope For Parkinson's Sufferers: 'Cross Fire' From Brain Makes Patients Tremble

Date:
July 14, 2008
Source:
Helmholtz Association of German Research Centres
Summary:
A typical symptom of Parkinson's disease is tremor in patients. Scientists have succeeded in demonstrating the mechanisms which cause the so-called tremor: neuron clusters in the depths of the brain drive the tremor. This discovery supports Tass' research activities aiming at developing a therapy for Parkinson's disease. A new deep brain pacemaker has been developed with the aim of bringing cells out of the diseased mode for good.

A typical symptom of Parkinson's disease is tremor in patients. A group of scientists, including Professor Peter Tass from Forschungszentrum Jülich have succeeded in demonstrating the mechanisms which cause the so-called tremor: neuron clusters in the depths of the brain drive the tremor. This discovery supports Tass' research activities aiming at developing a therapy for Parkinson's disease. A new deep brain pacemaker is to bring cells out of the diseased mode for good.

Related Articles


Scientists from Forschungszentrum Jülich, a member of the Helmholtz Association, have developed a deep brain pacemaker aimed to help Parkinson's patients on a large scale starting in 2009.

Communication between the networks of neurons is disturbed in people suffering from Parkinson's disease. These "fire" their stimuli at the same time thus causing the typical tremor. The frequency measured here is 5 hertz (Hz), i.e. five oscillations per second. In Germany, there are officially around 150,000 Parkinson's patients, although it is estimated that up to 450,000 people are affected.

To date, scientists have assumed that the 5-Hz rhythm deep in the brain resulted from nerve signals, which are transmitted from muscles in the limbs back to the brain. The scientific term for this response is "proprioceptive feedback". The prevailing opinion of many scientists to date, however, is that the "cross fire" is not emitted by the brain. The reason for this assumption was that the measured frequency of the "proprioceptive feedback" and the frequency in a specific core region of the brain, in the thalamus and the basal ganglia, were not completely synchronous.

With a combination of several state-of-the-art analytical processes, the team has now succeeded in demonstrating that it is not only nerve signals from the muscles as feedback that drive the diseased 5-Hz rhythm in the brain. Headed by Prof. Volker Sturm, neurosurgeons in Cologne implanted electrodes in patients for the measurements, and scientists in Saratov, Russia, recalculated the obtained data together with scientists from Jülich. "Signals in the frequency domain of 5 Hz from the core region of the brain also drive the tremor", explained Peter Tass. "The difference: the feedback from the limbs is a fast and easy stimulus transmission. The signals from the thalamus and the basal ganglia are, however, transmitted to certain loop-like neuron pathways of the brain and spinal cord. Therefore, the dynamics are more complicated and the pathway is longer."

The Jülich medical scientist, mathematician and physicist believes that these new findings reinforce the theoretical basis of "his" deep brain pacemaker. This device influences the disturbed neurons in the core region of the brain and effectively removes their compulsion to "fire" at the same time. Tass' new development disturbs this compulsory diseased mode by using very mild, targeted and desynchronized stimuli in different places. In this way, the rhythm becomes irregular and breaks down. Compared to conventional devices of this type, the Jülich deep brain pacemaker puts less strain on the patient and needs less energy. Moreover, the nerve tissue is stimulated in such a way that the neurons abandon their diseased strong synaptic networks and thus forget their compulsion to develop diseased rhythms.

The pacemaker consists of two electrodes that are carefully located at the dysregulated parts of the brain. The so-called stimulator provides the electrodes with energy and signals to stimulate the neurons in the brain. This device is implanted below the collarbone under the skin and thin wires also connect it with the electrodes under the skin.

Peter Tass is head of the working group "Neuromodulation" at the Institute of Neurosciences and Biophysics -- Medicine in Forschungszentrum Jülich. Together with Volker Sturm from the University of Cologne, he was awarded the Schrödinger Prize in 2005. In the following year, both were nominated for the Future Prize, which is awarded by the President of the Federal Republic of Germany.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Smirnov et al. The generation of Parkinsonian tremor as revealed by directional coupling analysis. EPL (Europhysics Letters), 2008; 83 (2): 20003 DOI: 10.1209/0295-5075/83/20003

Cite This Page:

Helmholtz Association of German Research Centres. "Deep Brain Pacemaker Offers Hope For Parkinson's Sufferers: 'Cross Fire' From Brain Makes Patients Tremble." ScienceDaily. ScienceDaily, 14 July 2008. <www.sciencedaily.com/releases/2008/07/080711090048.htm>.
Helmholtz Association of German Research Centres. (2008, July 14). Deep Brain Pacemaker Offers Hope For Parkinson's Sufferers: 'Cross Fire' From Brain Makes Patients Tremble. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2008/07/080711090048.htm
Helmholtz Association of German Research Centres. "Deep Brain Pacemaker Offers Hope For Parkinson's Sufferers: 'Cross Fire' From Brain Makes Patients Tremble." ScienceDaily. www.sciencedaily.com/releases/2008/07/080711090048.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins