Featured Research

from universities, journals, and other organizations

Astronomers See Disks Surrounding Black Holes, Strengthened Evidence For Current Explanation Of Quasars

Date:
July 24, 2008
Source:
University of California - Santa Barbara
Summary:
For the first time, researchers have found a way to view the accretion disks surrounding black holes and verify that their true electromagnetic spectra match what astronomers have long predicted they would be. A black hole and its bright accretion disk have been thought to form a quasar, the powerful light source at the center of some distant galaxies. Using a polarizing filter, astronomers isolated the light emitted by the accretion disk from that produced by other matter in the vicinity of the black hole.

A polarizing filter attached to a telescope suppresses the light emitted by dust particles and ionized gas clouds around the quasar so its true electromagnetic spectrum can be revealed.
Credit: Makoto Kishimoto, with cloud image by Schartmann

For the first time, a team of international researchers has found a way to view the accretion disks surrounding black holes and verify that their true electromagnetic spectra match what astronomers have long predicted they would be.

A black hole and its bright accretion disk have been thought to form a quasar, the powerful light source at the center of some distant galaxies. Using a polarizing filter, the research team, which included Robert Antonucci and Omer Blaes, professors of physics at the University of California, Santa Barbara, isolated the light emitted by the accretion disk from that produced by other matter in the vicinity of the black hole.

"This work has greatly strengthened the evidence for the accepted explanation of quasars," said Antonucci.

Quasars are the brilliant cores of remote galaxies, at the hearts of which lie supermassive black holes that can generate enough power to outshine the Sun a trillion times. These mighty power sources are fuelled by interstellar gas, thought to be sucked into the hole from a surrounding 'accretion disc'. New research verifies a long-standing prediction about the intensely luminous radiation emitted by these accretion discs.

According to Antonucci, the physical process that astronomers find most appealing to explain a quasar's energy source and light production involves matter falling toward a supermassive black hole and swirling around in a disk as it makes its way to the event horizon - the spherical surface that marks the boundary of the black hole. In the process, friction causes the matter to heat up such that it produces light in all wavelengths of the spectrum, including infrared, visible, and ultraviolet. Finally, the matter falls into the black hole and thereby increases the black hole's mass.

"If that's true, we can predict from the laws of physics what the electromagnetic spectrum of the quasar should be," said Antonucci. But testing the prediction has been impossible until now because astronomers have not been able to distinguish between the light emanating from the accretion disk and that of dust particle and ionized gas clouds in the area of the black hole.

By attaching a polarizing filter to the United Kingdom Infrared Telescope (UKIRT) on Mauna Kea in Hawaii, the research team, led by Makoto Kishimoto, an astronomer with the Max-Plank Institute for Radio Astronomy in Bonn, and a former postdoctoral fellow at UCSB, eliminated the extraneous light and was able to measure the spectrum of the accretion disk. Doing so, they demonstrated that the spectrum matches what previously had been predicted. The researchers also used extensive data gathered from the polarization analyzer of the Very Large Telescope, an observatory in Chile that is operated by the European Space Observatory.

What makes the polarizing filter able to perform its magic is the fact that direct light is not polarized - that is, it has no preference in terms of the directional alignment of its electrical field. The accretion disk emanates direct light, as do the dust particles and ionized gas. However, a small amount of light from the accretion disk, which is the exact light the researchers want to study, reflects off gas located very close to the black hole. This light is polarized.

"So if we plot only polarized light, it's as if the additional light isn't there and we can see the true spectrum of the accretion disk," Antonucci said. "With this knowledge we have a better understanding of how black holes consume matter and expand."

Studying the spectrum of a glowing object such as a quasar provides astronomers with an incredible amount of valuable information about its properties and processes, Antonucci noted. "Our understanding of the physical processes in the disk is still rather poor, but now at least we are confident of the overall picture," he said.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kishimoto et al. The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared. Nature, 2008; 454 (7203): 492 DOI: 10.1038/nature07114

Cite This Page:

University of California - Santa Barbara. "Astronomers See Disks Surrounding Black Holes, Strengthened Evidence For Current Explanation Of Quasars." ScienceDaily. ScienceDaily, 24 July 2008. <www.sciencedaily.com/releases/2008/07/080723142119.htm>.
University of California - Santa Barbara. (2008, July 24). Astronomers See Disks Surrounding Black Holes, Strengthened Evidence For Current Explanation Of Quasars. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2008/07/080723142119.htm
University of California - Santa Barbara. "Astronomers See Disks Surrounding Black Holes, Strengthened Evidence For Current Explanation Of Quasars." ScienceDaily. www.sciencedaily.com/releases/2008/07/080723142119.htm (accessed September 2, 2014).

Share This




More Space & Time News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: NASA Captures Solar Flare

Raw: NASA Captures Solar Flare

AP (Sep. 1, 2014) NASA reported the sun emitted a mid-level solar flare, on August 24th. NASA's Solar Dynamics Observatory captured the images of the flare, which erupted on the left side of the sun. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins