Featured Research

from universities, journals, and other organizations

Imiquimod, An Immune Response Modifier, Is Dependent On The OGF-OGFr Signaling Pathway

Date:
July 24, 2008
Source:
Society for Experimental Biology and Medicine
Summary:
Researchers have discovered that the efficacy of imiquimod, a clinically important immune response modifier with potent antiviral and anti-tumor activity, is dependent on the opioid growth factor receptor axis for its action. This discovery, reported in Experimental Biology and Medicine, provides new insights into a widely used drug that may lead to development of new agents that will enhance effectiveness and attenuate side-effects.

Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that the efficacy of imiquimod, a clinically important immune response modifier with potent antiviral and antitumor activity, is dependent on the Opioid Growth Factor (OGF)-OGF receptor (OGFr) axis for its action.

Related Articles


This discovery, reported in the August 08 issue of Experimental Biology and Medicine, provides new insights into a widely used drug that may lead to development of new agents that will enhance effectiveness and attenuate side-effects.

Imiquimod and resiquimod are imidazoquinoline compounds. Imiquimod (Aldara, R-837, S26308), the best characterized and most widely used, is highly efficacious in the treatment of external genital and anal warts, basal cell carcinoma, actinic keratoses, Kaposi's sarcoma, chronic hepatitis C infection, and intraepithelial carcinoma.

Therefore, the underlying mechanism of imiquimod action is of clinical importance. Imiquimod has been reported to be a toll-like receptor-7 agonist, and its anti-tumor effect exerted by modification of the immune response and stimulation of apoptosis. The mechanism of imiquimod on cell proliferation is unclear.

The research team, led by Dr. Ian S. Zagon, Distinguished University Professor, and Dr. Patricia J. McLaughlin, Professor, along with a pre-doctoral student Renee N. Donahue, in the Department of Neural & Behavioral Sciences and collaborator Moshe Rogosnitzky of MedInsight explored mechanisms responsible for the remarkable clinical action of this class of drugs.

Specifically, using tissue culture models, the investigators found that imidazoquinolines upregulate OGFr which in turn stimulates the interaction of the OGF-OGFr axis. This native, tonically active inhibitory pathway is known to regulate cell proliferation by modulating cyclin dependent kinase inhibitors, resulting in a retardation of cells at the G1-S interface of the cell cycle. Neutralization of OGF or knockdown of OGFr by siRNA technology eliminated the inhibitory effects of imidazoquinolines on cell replication. "Thus our data," Dr. Zagon said, "brings a paradigm shift to our thinking about a drug widely used in the clinics. Rather than imiquimod activity being mediated by induction of various cytokines, including interferon (IFN)-α, IFN-γ, tumor necrosis factor-α (TNFα) interleukin (IL)-1α, and IL-12 as currently thought, an entirely new pathway - native to body chemistry - has been discovered to regulate cell proliferation by imidazoquinolines."

Co-author, Moshe Rogosnitzky adds: "The elucidation of imiquimod's immune-independent mechanism of action in cancer also creates exciting new therapeutic possibilities for a number of non-cancer conditions, and these are now being further explored. Such studies could lead to new off-label applications for imiquimod as well as development of imiquimod analogues and unique combination therapies."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine stated "Through decades of elegant and ground-breaking work, Zagon and colleagues have identified the role of met-enkephalin (the opioid growth factor –OGF) and the OGF receptor in regulating cell proliferation. The current study demonstrates that the mechanism of imidazoquinoline activity is via OGF and OGFr which will have a profound impact on its use as a therapeutic for cancer and many other non-cancerous disorders."


Story Source:

The above story is based on materials provided by Society for Experimental Biology and Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Society for Experimental Biology and Medicine. "Imiquimod, An Immune Response Modifier, Is Dependent On The OGF-OGFr Signaling Pathway." ScienceDaily. ScienceDaily, 24 July 2008. <www.sciencedaily.com/releases/2008/07/080724150439.htm>.
Society for Experimental Biology and Medicine. (2008, July 24). Imiquimod, An Immune Response Modifier, Is Dependent On The OGF-OGFr Signaling Pathway. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2008/07/080724150439.htm
Society for Experimental Biology and Medicine. "Imiquimod, An Immune Response Modifier, Is Dependent On The OGF-OGFr Signaling Pathway." ScienceDaily. www.sciencedaily.com/releases/2008/07/080724150439.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins