Featured Research

from universities, journals, and other organizations

Potential Of Graphene Films As Next-generation Transistors Demonstrated

Date:
August 1, 2008
Source:
University of Pennsylvania
Summary:
Physicists at the University of Pennsylvania have characterized an aspect of graphene film behavior by measuring the way it conducts electricity on a substrate. This milestone advances the potential application of graphene, the ultra-thin, single-atom thick carbon sheets that conduct electricity faster and more efficiently than silicon, the current material of choice for transistor fabrication.

Physicists at the University of Pennsylvania have characterized an aspect of graphene film behavior by measuring the way it conducts electricity on a substrate. This milestone advances the potential application of graphene, the ultra-thin, single-atom thick carbon sheets that conduct electricity faster and more efficiently than silicon, the current material of choice for transistor fabrication.

The research team, led by A.T. Charlie Johnson, professor in the Department of Physics and Astronomy at Penn, demonstrated that the surface potential above a graphene film varies with the thickness of the film, in quantitative agreement with the predictions of a nonlinear Thomas-Fermi theory of the interlayer screening by relativistic low energy charge carriers. The study appears online in the journal Nanoletters and will appear in print in the August edition.

Johnson’s study, “Surface Potentials and Layer Charge Distributions in Few-Layer Graphene Films,” clarifies experimentally the electronic interaction between an insulating substrate and few-layer graphene films, or FLGs, the standard model for next-generation transistors.

It is more practical to develop devices from FLGs, rather than single-layer materials. To make use of these films, graphene must be placed on a substrate to be functionalized as a transistor. Placing the film on a substrate causes an electronic interaction between the two materials that transfers carriers to or from, or “dopes,” the FLG.

The focus of the Penn study was aimed at understanding how these doped charges distribute themselves among the different layers of graphene. The distribution of these charges determines the behavior of graphene transistors and other circuits, making it a critical component for device engineering. The team measured the surface potential of the material to determine how these doped charges were distributed along the transistor, as well as how the surface potential of the transistor varied with the number of layers of graphene employed.

Using electrostatic force microscopy measurements, the team characterized the surface potential of the graphene film and found it to be dependent on the thickness of the graphene layers. The thicker the carbon strips, the higher the electronic surface potential, with the surface potential approaching its limit for films that were five or more sheets thick. This behavior is unlike that found for conventional metals or semiconductors which would have, respectively, much shorter or longer screening lengths.

The surface potential measurements were in agreement with a theory developed by Penn professor and physicist Eugene Mele. The theory makes an important approximation, by treating electrostatic interactions in the film but neglecting quantum mechanical tunneling between neighboring layers. This allows the model to be solved analytically for the charge distribution and surface potential.

While prior theoretical work considered the effect of a substrate on the electronic structure of FLG, few experiments have directly probed the graphene-substrate interaction. Quantitative understanding of charge exchange at the interface and the spatial distribution of the resulting charge carriers is a critical input to device design.

Graphene-derived nanomaterials are a promising family of structures for application as atomically thin transistors, sensors and other nanoelectronic devices. These honeycomb sheets of sp2 -bonded carbon atoms and graphene sheets rolled into molecular cylinders share a set of electronic properties making them ideal for use in nanoelectronics: tunable carrier type and density, exceptionally high carrier mobility and structural control of their electronic band structures. A significant advantage of graphene is its two-dimensionality, making it compatible with existing planar device architectures. The challenge is realizing the potential of these materials by fabricating and insulating them on substrates.

The study was performed by Sujit S. Datta and Mele of the Department of Physics and Astronomy in the School of Arts and Sciences at Penn as well as Douglas R. Strachan of the Department of Physics and Astronomy and also the Department of Materials Science and Engineering within Penn’s School of Engineering and Applied Science.

The study was funded by

Penn’s Nano/Bio Interface Center

through the National Science Foundation, the Army Research Office and the Department of Energy.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "Potential Of Graphene Films As Next-generation Transistors Demonstrated." ScienceDaily. ScienceDaily, 1 August 2008. <www.sciencedaily.com/releases/2008/07/080731140313.htm>.
University of Pennsylvania. (2008, August 1). Potential Of Graphene Films As Next-generation Transistors Demonstrated. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/07/080731140313.htm
University of Pennsylvania. "Potential Of Graphene Films As Next-generation Transistors Demonstrated." ScienceDaily. www.sciencedaily.com/releases/2008/07/080731140313.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins