Featured Research

from universities, journals, and other organizations

Physicists Provide 'Guiding Hands' For Proton Therapy

Date:
August 6, 2008
Source:
American Institute of Physics
Summary:
Proton therapy offers great benefits as a treatment modality in radiation oncology for a variety of hard to treat tumors. While physicians manage the treatment of people, behind the scenes, proton physicists play a crucial role, providing support and guidelines for treatment planning for calculation of dose distributions, measurements of radiation delivery, measurements of proton beam data, quality assurance of all measuring equipment and of the proton accelerator, and calibration of proton beams, all essential to successful treatment outcomes.

Proton therapy offers great benefits as a treatment modality in radiation oncology for a variety of hard to treat tumors. While physicians manage the treatment of people, behind the scenes, proton physicists play a crucial role, providing support and guidelines for treatment planning for calculation of dose distributions, measurements of radiation delivery, measurements of proton beam data, quality assurance of all measuring equipment and of the proton accelerator, and calibration of proton beams, all essential to successful treatment outcomes.

Making the most of the characteristics of proton beams is the role of a team at M.D. Anderson Cancer Center using a proton machine for treatment of cancerous tumors. Proton therapy is a preferred method of treatment where limited radiation dose to critical organs is crucial, an option that may not be feasible to achieve in some instances when people are treated with high energy photon radiation. This is especially valuable in cases such as craniospinal irradiation for pediatric Central Nervous System tumors or in the treatment of people with lung cancer where dose can be restricted to the tumor without affecting nearby tissue and organs.

Currently two techniques are used for delivering proton beams. Passively scattered proton beams deliver uniform dose to the tumor and a small region of adjacent tissue and are shaped laterally by apertures and distally by compensators to reduce the dose to healthy tissue. M.D. Anderson Cancer Center has pioneered a second technique in North America that uses a pencil beam to focus the dose. The pencil beam delivers dose to the tumor at many different spots and multiple layers within the tumor, dramatically reducing the dose to healthy tissue as compared to passively scattered proton beams. The technique does not use apertures and compensators but instead restricts the dose by selecting the spots confined within the tumor. The dose calculation and the accuracy of delivery of these pencil beams is a complex process, but offers great advantages for sparing healthy tissue.

While proton therapy is improving both treatment and quality of life for people with tumors, there is still a great deal to be learned in order to maximize the benefits of this treatment modality. Dose delivery in an inhomogeneous media such as the human body needs to be further understood and investigated in order to assure more accurate dose calculation for optimal dose delivery to the tumor while sparing surrounding tissue, a major advantage offered by proton therapy. The M.D. Anderson team is hoping that their work will benefit others in the field. Dr. Bijan Arjomandy, a physicist at the M.D. Anderson Proton Therapy Center in Houston explains, "We hope that by sharing our experiences in developing such a QA program, we will provide an insight for new proton therapy facilities just establishing their programs," he says.

The research was described in the talk, "An Overview of Comprehensive Proton Machine Quality Assurance at the University of Texas M.D. Anderson Cancer Center," presented July 31, 2008 at the 50th meeting of the American Association of Physicists in Medicine.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Physicists Provide 'Guiding Hands' For Proton Therapy." ScienceDaily. ScienceDaily, 6 August 2008. <www.sciencedaily.com/releases/2008/08/080805160431.htm>.
American Institute of Physics. (2008, August 6). Physicists Provide 'Guiding Hands' For Proton Therapy. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2008/08/080805160431.htm
American Institute of Physics. "Physicists Provide 'Guiding Hands' For Proton Therapy." ScienceDaily. www.sciencedaily.com/releases/2008/08/080805160431.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins