Featured Research

from universities, journals, and other organizations

Skipping Atomic-scale Stones To Study Some Chemistry Basics

Date:
August 11, 2008
Source:
National Institute of Standards and Technology
Summary:
Thought experiment: a carbon dioxide molecule—think of a cheerleader’s baton—comes slanting in at high speed over a dense liquid, strikes the surface and ricochets. How does it tumble? Fast or slow? Forward, backward or sideways? New experiments are giving a uniquely detailed look at what happens when gas molecule meets fluid.

Image from the computer simulation of the JILA gas-liquid scattering experiments uses long molecules tethered to a surface as a useful stand-in for liquids, which are too complex for computer modeling.
Credit: Perkins, JILA

Thought experiment: a carbon dioxide molecule—think of a cheerleader’s baton—comes slanting in at high speed over a dense liquid, strikes the surface and ricochets. How does it tumble? Fast or slow? Forward, backward or sideways?

Related Articles


These are not idle questions because simple events like the tumbling molecule go to the heart of the chemistry and physics of gas-liquid interactions. These cover a broad swath of important chemical processes—including breathing—for which details of the encounter are just coming into view.

New experiments from JILA in Boulder, Colo., are giving a uniquely detailed look at what happens when gas molecule meets fluid.

Historically, chemistry has been confined to observing the mass behavior of huge numbers of molecules—mix things together, look at the reaction products, infer what happened. Only in the past couple of decades have powerful lasers made it possible to “watch” specific events involving only a few molecules. Today, they can even observe the role played by a molecule’s shape, a critical influence in many interactions.

Now, Bradford Perkins, Jr., of the University of Colorado and David Nesbitt of the National Institute of Standards and Technology (NIST) report the first direct observation of the rotational dynamics of a molecule bouncing off a liquid surface.

Perkins and Nesbitt directed a beam of carbon dioxide molecules at a pool of synthetic fluorinated fluid in a vacuum. The molecules that bounced off passed through an infrared laser beam, which switched rapidly between alternate orientations, or polarization states. A sensitive detector measured how much light was absorbed by the passing molecules.

A rod-like carbon dioxide molecule will absorb with slightly different efficiencies depending on how it rotates relative to the light’s polarization. Analyzing the oscillating signal allowed the team to observe just how fast and in what direction the molecules were tumbling after hitting the fluid. They found the molecules had a pronounced tendency for a forward, end-over-end “top spin,” as if hit by a star Wimbledon tennis player, with the rate of tumbling strongly correlated with how its molecular rotation is aligned relative to the light path.

“To know how this happens at the molecular level—how things bounce, skip, spin, tumble, push and pull—represents a big leap in our understanding,” says Nesbitt. “Experiments of this sort help build that understanding.”

In addition, Nesbitt says, observing how gas molecules of different shapes twist and rotate after striking a liquid reveals a lot about the nature of the fluid surface—how “rough” it is from the disturbance of microscopic waves and how that roughness affects interactions with gases.

JILA is a research institution operated jointly by NIST and the University of Colorado. The research was supported by the Air Force Office of Scientific Research and the National Science Foundation.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Perkins et al. Special Feature: Stereodynamics in state-resolved scattering at the gas-liquid interface. Proceedings of the National Academy of Sciences, 2008; DOI: 10.1073/pnas.0800401105

Cite This Page:

National Institute of Standards and Technology. "Skipping Atomic-scale Stones To Study Some Chemistry Basics." ScienceDaily. ScienceDaily, 11 August 2008. <www.sciencedaily.com/releases/2008/08/080807112639.htm>.
National Institute of Standards and Technology. (2008, August 11). Skipping Atomic-scale Stones To Study Some Chemistry Basics. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2008/08/080807112639.htm
National Institute of Standards and Technology. "Skipping Atomic-scale Stones To Study Some Chemistry Basics." ScienceDaily. www.sciencedaily.com/releases/2008/08/080807112639.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gas Production Cut on Earthquake Fears

Gas Production Cut on Earthquake Fears

Reuters - Business Video Online (Mar. 5, 2015) — The Dutch government has cut production at Europe&apos;s largest gas field in Groningen amid concerns over earthquakes which are damaging local churches. As Amy Pollock reports the decision - largely politically-motivated - could have big economic conseqeunces. Video provided by Reuters
Powered by NewsLook.com
Star Wars-Inspired Prototype Creates Holographic Display

Star Wars-Inspired Prototype Creates Holographic Display

Reuters - Innovations Video Online (Mar. 5, 2015) — A prototype holographic display named Leia - after the Star Wars princess who appeared in holographic form asking Obi-Wan Kenobu for help - is demonstrated at the Mobile World Congress in Barcelona. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
IKEA and Samsung Launch Embedded Wireless Charging Range

IKEA and Samsung Launch Embedded Wireless Charging Range

Reuters - Innovations Video Online (Mar. 5, 2015) — Samsung and IKEA hope their new embedded wireless charging products, launched at Barcelona&apos;s Mobile World Congress, will tempt consumers eager for plugless power. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Samsung Unveils $30,000 'Dream Doghouse'

Samsung Unveils $30,000 'Dream Doghouse'

Buzz60 (Mar. 5, 2015) — On display at the Crufts dog show in England, the &apos;dog kennel of the future&apos; comes with features like a doggie treadmill and Samsung tablet. Mike Janela (@mikejanela) has more. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins