Featured Research

from universities, journals, and other organizations

Scientists Overcome Nanotechnology Hurdle

Date:
August 18, 2008
Source:
Biotechnology and Biological Sciences Research Council
Summary:
When you make a new material on a nano scale how can you see what you have made? This research shows a newly developed technique to examine tiny protein molecules on the surface of a gold nanoparticle. This is the first time scientists have been able to build a detailed picture of self-assembled proteins on a nanoparticle and it offers the promise of new ways to design and manufacture novel materials on the tiniest scale.

An image from a molecular dynamics simulation showing negatively (red) and positively (blue) charged areas of the nanoparticle. Part of the peptide is shown in the lower half of the frame and the reactive molecule attached in the middle
Credit: Duschesne et al: Supramolecular Domains in Mixed Peptide Self-Assembled Monolayers on Gold Nanoparticles. ChemBioChem. DOI: 10.1002/cbic.200800326. Copyright Wiley-VCH Verlag GmbH & Co. KGaA.

When you make a new material on a nanoscale how can you see what you have made?  A team lead by a Biotechnology and Biological Sciences research Council (BBSRC) fellow has made a significant step toward overcoming this major challenge faced by nanotechnology scientists. 

With new research published August 13 in ChemBioChem, the team from the University of Liverpool, The School of Pharmacy (University of London) and the University of Leeds, show that they have developed a technique to examine tiny protein molecules called peptides on the surface of a gold nanoparticle.  This is the first time scientists have been able to build a detailed picture of self-assembled peptides on a nanoparticle and it offers the promise of new ways to design and manufacture novel materials on the tiniest scale - one of the key aims of nanoscience.

Engineering new materials through assembly of complex, but tiny, components is difficult for scientists.  However, nature has become adept at engineering nanoscale building blocks, e.g. proteins and RNA.  These are able to form dynamic and efficient nanomachines such as the cell's protein assembly machine (the ribosome) and minute motors used for swimming by bacteria. 

The BBSRC-funded team, led by Dr Raphaλl Lιvy, has borrowed from nature, developing a way of constructing complex nanoscale building blocks through initiating self-assembly of peptides on the surface of a metal nanoparticle.  Whilst this approach can provide a massive number and diversity of new materials relatively easily, the challenge is to be able to examine the structure of the material.

Using a chemistry-based approach and computer modelling, Dr Lιvy has been able to measure the distance between the peptides where they sit assembled on the gold nanoparticle.  The technique exploits the ability to distinguish between two types of connection or 'cross-link' - one that joins different parts of the same molecule (intramolecular), and another that joins together two separate molecules (intermolecular). 

As two peptides get closer together there is a transition between the two different types of connection.  Computer simulations allow the scientists to measure the distance at which this transition occurs, and therefore to apply it as a sort of molecular ruler. Information obtained through this combination of chemistry and computer molecular dynamics shows that the interactions between peptides leads to a nanoparticle that is relatively organized, but not uniform. This is the first time it has been possible to measure distances between peptides on a nanoparticle and the first time computer simulations have been used to model a single layer of self-assembled peptides. 

Dr Lιvy said:  "As nanotechnology scientists we face a challenge similar to the one faced by structural biologists half a century ago: determining the structure with atomic scale precision of a whole range of nanoscale materials.  By using a combination of chemistry and computer simulation we have been able to demonstrate a method by which we can start to see what is going on at the nanoscale. 

"If we can understand how peptides self-assemble at the surface of a nanoparticle, we can open up a route towards the design and synthesis of nanoparticles that have complex surfaces. These particles could find applications in the biomedical sciences, for example to deliver drugs to a particular target in the body, or to design sensitive diagnostic tests. In the longer term, these particles could also find applications in new generations of electronic components."

Professor Nigel Brown, BBSRC Director of Science and Technology, said:  “Bionanotechnology holds great promise for the future.  We may be able to create stronger, lighter and more durable materials, or new medical applications.  Basic science and techniques for working at the nanoscale are providing the understanding that will permit future such applications of bionanotechnology.”


Story Source:

The above story is based on materials provided by Biotechnology and Biological Sciences Research Council. Note: Materials may be edited for content and length.


Journal Reference:

  1. Duchesne et al. Supramolecular Domains in Mixed Peptide Self-Assembled Monolayers on Gold Nanoparticles. ChemBioChem, 2008; NA DOI: 10.1002/cbic.200800326

Cite This Page:

Biotechnology and Biological Sciences Research Council. "Scientists Overcome Nanotechnology Hurdle." ScienceDaily. ScienceDaily, 18 August 2008. <www.sciencedaily.com/releases/2008/08/080813095718.htm>.
Biotechnology and Biological Sciences Research Council. (2008, August 18). Scientists Overcome Nanotechnology Hurdle. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2008/08/080813095718.htm
Biotechnology and Biological Sciences Research Council. "Scientists Overcome Nanotechnology Hurdle." ScienceDaily. www.sciencedaily.com/releases/2008/08/080813095718.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Massive Air Bag Recall Affects More Than 4.5 Million Vehicles

Massive Air Bag Recall Affects More Than 4.5 Million Vehicles

Reuters - US Online Video (Oct. 21, 2014) — Major automakers are recalling millions of vehicles due to potentially defective front passenger air bag inflators that can rupture and spray metal shrapnel. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins