Featured Research

from universities, journals, and other organizations

Novel Mechanism That Controls The Development Of Autoimmunity Discovered

Date:
August 14, 2008
Source:
NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases
Summary:
Scientists have found a mechanism in the immune systems of mice that can lead to the development of autoimmune disease when turned off. The findings shed light on the processes that lead to the development of autoimmunity and could also have implications for the development of drugs to increase the immune response in diseases such as cancer and HIV.

Scientists at the National Institutes of Health (NIH) have found a mechanism in the immune systems of mice that can lead to the development of autoimmune disease when turned off.

The findings shed light on the processes that lead to the development of autoimmunity and could also have implications for the development of drugs to increase the immune response in diseases such as cancer and HIV.

The scientists from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and the National Institute of Allergy and Infectious Diseases (NIAID), both part of the NIH, studied immune system T cells – specifically the helper T cell, an immune system component that helps other cells fight infection. They focused on the protein furin, an enzyme that plays an important role in the functioning of T cells.

Scientists have been limited in their ability to study the protein furin, because other enzymes can perform some of the same functions. Also, furin is essential to life, so scientists have been unable to create a mouse without furin that lives past the embryo stage of development. Since the NIH scientists were unable to see what a mouse without furin would look like, they collaborated with Belgium scientists to create a mouse without furin only in T cells.

What they discovered was that mice without furin in these cells developed systemic autoimmune disease. This means that the immune systems of the mice attacked their own cells and tissues throughout their bodies.

"We already know that furin seems to have roles in a variety of human diseases, such as cancer, cystic fibrosis and infectious diseases," says lead author Marko Pesu, Ph.D., in the NIAMS' Molecular Immunology and Inflammation Branch. "These findings show that having no furin in certain immune system cells can increase the immune response and lead to autoimmune disease in mice."

The researchers found that deleting furin in helper T cells affected the functioning of two types of T cells, regulatory and effector T cells. The former cells, also called Tregs, promote immune tolerance to the body's own cells and tissues. Upon further examination, the researchers found that mice lacking furin in Tregs had lower levels of a specific protein, TGF-1, which is produced by these cells and is important for their ability to preserve immune tolerance. However, the researchers noted that effector T cells also produce TGF-1. They found that furin is also needed for TGF-1 production by effector T cells and that the absence of furin in effectors makes these cells more aggressive in causing autoimmune disease and tissue damage.

"Inhibiting furin has been thought to reduce growth of malignant cells or to block infections by preventing essential activation of a pathogen," says study author and NIAMS' Scientific Director John J. O'Shea, M.D., chief of the NIAMS' Molecular Immunology and Inflammation Branch. "However, these results suggest that the development of drug interventions could have an unexpected side effect of increasing the risk of developing autoimmune disease."

Investigators from the NIH's National Cancer Institute also contributed to this study.


Story Source:

The above story is based on materials provided by NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marko Pesu, Wendy T. Watford, Lai Wei, Lili Xu, Ivan Fuss, Warren Strober, John Andersson, Ethan M. Shevach, Martha Quezado, Nicolas Bouladoux, Anton Roebroek, Yasmine Belkaid, John Creemers, & John J. O'Shea. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature Advance Access, August 13, 2008 DOI: 10.1038/nature07210

Cite This Page:

NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases. "Novel Mechanism That Controls The Development Of Autoimmunity Discovered." ScienceDaily. ScienceDaily, 14 August 2008. <www.sciencedaily.com/releases/2008/08/080813144359.htm>.
NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases. (2008, August 14). Novel Mechanism That Controls The Development Of Autoimmunity Discovered. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2008/08/080813144359.htm
NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases. "Novel Mechanism That Controls The Development Of Autoimmunity Discovered." ScienceDaily. www.sciencedaily.com/releases/2008/08/080813144359.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins