Featured Research

from universities, journals, and other organizations

Bouncy Cell Phones And Car Bumpers May Be Workable With Springy Nanotubes

Date:
August 14, 2008
Source:
Clemson University
Summary:
Electronic devices get smaller and more complex every year. It turns out that fragility is the price for miniaturization, especially when it comes to small devices, such as cell phones, hitting the floor. Wouldn't it be great if they bounced instead of cracked when dropped?

A few strands of coiled nanotubes.
Credit: Image courtesy of Clemson University

Electronic devices get smaller and more complex every year. It turns out that fragility is the price for miniaturization, especially when it comes to small devices, such as cell phones, hitting the floor. Wouldn’t it be great if they bounced instead of cracked when dropped?

A team of Clemson University researchers, led by Apparao Rao, professor of physics, has invented a way to make beds of tiny, shock-absorbing carbon springs which possibly could be used to protect delicate objects from damaging impacts. With collaborators at the University of California at San Diego, the team has shown that layers of these tiny springs called coiled carbon nanotubes, each a thousand times smaller than a human hair, can act as extremely resilient shock absorbers.

Similar coiled carbon nanotubes have been made before, yet Clemson researchers say this method is unique since beds of coiled carbon nanotubes can be grown in a single step using a proprietary hydrocarbon-catalyst mixture.

The group also envisions coiled nanotubes in soldiers’ body armor, car bumpers and bushings and even as cushioning elements in shoe soles.

“The problem we have faced in the past is producing enough of these coiled carbon nanotubes at a reasonable cost to make a difference,” said Rao. “Because our current method produces coiled nanotubes quickly in high yield, it can be readily scaled up to industrial levels. After formation, the coiled nanotubes can be peeled off in one piece and placed on other surfaces to form instant cushioning coatings.”

In earlier studies, Rao and his team, along with UCSD collaborators, tested more conventional straight carbon nanotubes against coil-shaped nanotubes. When a stainless steel ball was dropped onto a single nanotube layer, the coiled nanotubes completely recovered from the impact, while the straight ones did not.

“It’s like an egg toss,” said Rao. “If you move your hand backward as you catch the egg and increase the time of contact over which the impact occurs, the impact will be less forceful and the egg will not break. It is the same phenomenon experienced in catching a baseball.”

In previous work, Rao’s group developed a process that coaxes a traditionally straight carbon nanotube to split into a “Y” shape. When powered by electrical voltages, the Y-branched nanotubes behave like tiny switches or transistors that process information.

“Our studies with carbon nanotubes have been ongoing for quite some time,” said Rao. “Each step along the way has led to the next breakthrough, and each time we’ve learned more about how they grow and what their applications could be. We believe that carbon nanotubes have tremendous potential for the lives of each one of us.”


Story Source:

The above story is based on materials provided by Clemson University. Note: Materials may be edited for content and length.


Cite This Page:

Clemson University. "Bouncy Cell Phones And Car Bumpers May Be Workable With Springy Nanotubes." ScienceDaily. ScienceDaily, 14 August 2008. <www.sciencedaily.com/releases/2008/08/080813164636.htm>.
Clemson University. (2008, August 14). Bouncy Cell Phones And Car Bumpers May Be Workable With Springy Nanotubes. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2008/08/080813164636.htm
Clemson University. "Bouncy Cell Phones And Car Bumpers May Be Workable With Springy Nanotubes." ScienceDaily. www.sciencedaily.com/releases/2008/08/080813164636.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins