Featured Research

from universities, journals, and other organizations

Creating Unconventional Metals: Quantum Halfway House Between Magnet And Semiconductor Discovered

Date:
August 21, 2008
Source:
University College London
Summary:
The semiconductor silicon and the ferromagnet iron are the basis for much of mankind's technology, used in everything from computers to electric motors. Scientists now report that they have combined these elements with a small amount of another common metal, manganese, to create a new material which is neither a magnet nor an ordinary semiconductor.

The magnetic bar magnets (called "magnetic moments") associated with the mobile electrons (red arrows) responsible for electrical conduction and manganese atoms (green arrows) in manganese doped iron silicide (Fe1-xMnxSi). This figure depicts the coupling of the magnetic moments as the temperature is reduced from room temperature (top of the figure) where the magnetic dipoles are independent, to very low temperature (bottom of the figure) where coupling between the dipoles creates regions where the moments add to zero (light blue region). The existence of a population of uncoupled complexes (depicted here in the yellow region) down to the lowest temperatures results in the material being neither a magnet nor common semiconductor. External magnetic fields align these rare yellow regions to the magnetic field, switching on ordinary semiconducting behavior.
Credit: UCL/London Centre for Nanotechnology

The semiconductor silicon and the ferromagnet iron are the basis for much of mankind's technology, used in everything from computers to electric motors. In the journal Nature (August 21st) an international group of scientists, including academic and industrial researchers from the UK, USA and Lesotho, report that they have combined these elements with a small amount of another common metal, manganese, to create a new material which is neither a magnet nor an ordinary semiconductor.

The paper goes on to show how a small magnetic field can be used to switch ordinary semiconducting behaviour (such as that seen in the electronic-grade silicon which is used to make transistors) back on.

The new material exists in a quantum halfway house between magnet and semiconductor - in the same way that much more complex materials such as ceramics which exhibit high temperature superconductivity exist in quantum halfway houses between metals and magnetic insulators. The research is of fundamental importance because it demonstrates, for the first time, a simple recipe for reaching this halfway house, whilst also suggesting new mechanisms for controlling electrical currents and magnetism in semiconductor devices.

Professor J.F. DiTusa of Louisiana State University and a co-author of the paper said: "It's amazing that something which was thought to exist theoretically in mathematical physics could actually be found in an alloy which was simply formed by melting together a few common elements."

Professor Gabriel Aeppli of UCL (University College London), another member of the research team and Director of the London Centre for Nanotechnology, added: "It might be possible to see similar effects in devices made using materials and methods found in laser pointers. This would put what we've seen firmly in the realm of that which can easily be achieved using current technologies."

The first author of the paper, Dr. N. Manyala of the National University of Lesotho, said: "We are looking forward to investigating whether we can see these effects using thin layers of the same materials deposited directly on the silicon wafers. These wafers are the same as those used by mass market electronics manufacturers as the basis for integrated circuits." Dr. Ramirez, who is now with LGS-Bell Labs Innovations echoed this thought, noting that, "with the end of Moore's law in sight, mechanisms for controlling and understanding possible new information bits such as spins in solids are actively being sought after."


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Cite This Page:

University College London. "Creating Unconventional Metals: Quantum Halfway House Between Magnet And Semiconductor Discovered." ScienceDaily. ScienceDaily, 21 August 2008. <www.sciencedaily.com/releases/2008/08/080820162856.htm>.
University College London. (2008, August 21). Creating Unconventional Metals: Quantum Halfway House Between Magnet And Semiconductor Discovered. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2008/08/080820162856.htm
University College London. "Creating Unconventional Metals: Quantum Halfway House Between Magnet And Semiconductor Discovered." ScienceDaily. www.sciencedaily.com/releases/2008/08/080820162856.htm (accessed April 25, 2014).

Share This



More Matter & Energy News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Next Stop America for France's TGV?

Next Stop America for France's TGV?

Reuters - Business Video Online (Apr. 24, 2014) General Electric keeps quiet on reports it's in talks to buy French turbine and train maker Alstom. Ivor Bennett reports on what could be an embarrassing rumour for the French government, with business-friendly reforms proving a hard sell. Video provided by Reuters
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins