Featured Research

from universities, journals, and other organizations

Rigorous Earthquake Simulations Aim To Make Buildings Safer

Date:
August 24, 2008
Source:
University of California - San Diego
Summary:
Engineering researchers have concluded months of rigorous earthquake simulation tests on a half-scale three-story structure, and will now begin sifting through their results so they can be used in the future designs of buildings across the nation.

Engineers at UC San Diego are using recent seismic tests of a three-story parking structure to help improve building codes across the nation.
Credit: Image courtesy of University of California - San Diego

Engineering researchers from UC San Diego and the University of Arizona have concluded three months of rigorous earthquake simulation tests on a half-scale three-story structure, and will now begin sifting through their results so they can be used in the future designs of buildings across the nation. The engineers produced a series of earthquake jolts as powerful as magnitude 8.0 on a structure resembling a parking garage.

The one-million pound precast concrete structure is the largest footprint of any structure ever tested on a shake table in the United States. The earthquake tests were conducted at the UC San Diego Jacobs School of Engineering’s Englekirk Structural Engineering Center, which is about eight miles east of the university’s main campus. As part of the project, the researchers are testing the seismic response of precast concrete floor systems used in structures such as parking garages, college dormitories, hotels, stadiums, prisons and office buildings. They are also trying to figure out ways to improve the connections in precast concrete buildings.

“One of the purposes of our research is to develop better designs for precast concrete buildings,” said Jose Restrepo, co-principal investigator of the project and a structural engineering professor at UC San Diego’s Jacobs School of Engineering. “The results of our research have been tremendous.”

Precast concrete, which is built in pieces and then put together to construct buildings, has been a breakthrough in the industry in terms of saving time and money, and increasing durability. While precast concrete has proven to be a robust design material for structures, researchers are working to provide the industry with new methods of connecting these pieces more efficiently.

“This is really important to our industry because we’ll be able to develop structures that can resist nature’s most difficult loads, including earthquakes,” said Tom D’Arcy, spokesman for the Precast/Prestressed Institute and chairman of The Consulting Engineers Group, Inc.

The $2.3 million research project is a collaboration between UC San Diego, the University of Arizona and Lehigh University. It is funded by the Precast/Prestressed Concrete Institute and its member companies and organizations, the National Science Foundation, the Charles Pankow Foundation and the Network for Earthquake Engineering Simulation (NEES).

During the tests, the researchers simulated earthquakes for different regions of the country, including Berkeley, Calif..; Knoxville, Tenn; and Seattle, Wash.

“We conducted tests from lower seismicity all the way to higher seismicity and shook the building stronger and stronger each time with a higher intensity,” Restrepo said.

The results of the research are expected to be implemented into building codes across the United States within the next few years. The researchers and industry leaders hope that this project and others like it will help prevent the future failure of buildings, much like what happened during the 6.7 magnitude earthquake in Northridge, CA. in 1994, with the collapse of several precast parking structures.

“Since that time, we have been working to come up with designs that will make these structures survive a Northridge earthquake or stronger,” said Robert Fleischman, principal investigator of the project and a civil engineering professor at the University of Arizona.

Seismic Simulation

Before the testing, the researchers performed computer simulations to help design the three-story structure and to determine where sensors should be placed on it. The data recorded by the sensors were used to take measurements of certain physical phenomena on the structure such as displacements, strains, and accelerations caused by the shaking; and to estimate forces in the structure. The data collected will also explain behavior of the structure during and after jolts, and will be used to compare directly to the simulations to either validate or adjust the computer models.

The use of these sensors, along with the computer simulation, may help lower costs of future seismic tests.

“We are only able to perform physical experiments on that one structure, but if we can show that our models capture important response properly, we can run hundreds of earthquake simulations a year for the cost of a graduate student, a fast computer and a software license, which, at around $50,000, is substantially less than the costs of these kinds of tests,” Fleischman said, adding that the researchers hope to have their first formal report on the seismic tests completed by early 2009.

The $9 million Englekirk shake table is one of 15 earthquake testing facilities. The UCSD-NEES shake table, the largest in the United States and the only outdoor shake table in the world, is ideally suited for testing tall, full-scale buildings.

“The Englekirk Center is very important to the research community and to the industry because it has an outdoor environment where we can perform large scale tests that can’t be done anywhere else in the world,” Restrepo said.

The recent seismic tests are an example of how the Jacobs School is performing research at the forefront of the National Academy of Engineering’s Grand Challenges for Engineering in the 21st Century.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Rigorous Earthquake Simulations Aim To Make Buildings Safer." ScienceDaily. ScienceDaily, 24 August 2008. <www.sciencedaily.com/releases/2008/08/080822131253.htm>.
University of California - San Diego. (2008, August 24). Rigorous Earthquake Simulations Aim To Make Buildings Safer. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2008/08/080822131253.htm
University of California - San Diego. "Rigorous Earthquake Simulations Aim To Make Buildings Safer." ScienceDaily. www.sciencedaily.com/releases/2008/08/080822131253.htm (accessed July 26, 2014).

Share This




More Earth & Climate News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virginia Governor Tours Tornado Aftermath

Virginia Governor Tours Tornado Aftermath

AP (July 25, 2014) Virginia Gov. Terry McAuliffe toured the Cherrystone Family Camping and RV Resort on the Chesapeake Bay today, a day after it was hit by a tornado. The storm claimed two lives and injured dozens of others. (July 25) Video provided by AP
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins