Featured Research

from universities, journals, and other organizations

Rifamycin Antibiotics Attack Tuberculosis Bacteria With Walls, Not Signals

Date:
August 27, 2008
Source:
Rockefeller University
Summary:
Amid concerns about the rising number of new tuberculosis cases worldwide, researchers have reexamined and disproved a theory that describes how a potent class of antibiotics kills a deadly form of bacteria. The findings not only bring scientists closer to understanding how these antibiotics work but also how the bacteria become resistant to their effects.

Hitting a wall: By binding next to RNA polymerase's active center (pink), the potent class of antibiotics called rifamycins (red and yellow) prevents deadly bacterial RNA from elongating.
Credit: Image courtesy of Rockefeller University

Amid concerns about the rising number of new tuberculosis cases worldwide, researchers led by Rockefeller University’s Seth A. Darst have reexamined and disproved a theory that describes how a potent class of antibiotics kills a deadly form of bacteria. The findings, which will appear soon online in the Proceedings of the National Academy of Sciences, not only bring scientists closer to understanding how these antibiotics work but also how the bacteria become resistant to their effects.

Related Articles


The class of antibiotics, called rifamycins, was developed in the 1950s to combat tuberculosis-causing bacteria. The problem, however, was that the bacteria fought back, quickly developing resistance. And the rate of decline for new tuberculosis cases has begun to slow during the past decade, with more than nine million people across the globe currently afflicted.

Rifamycins kill their prey by binding to RNA polymerase, the enzyme that kicks off gene expression by transcribing DNA to messenger RNA. However, the exact mechanism by which rifamycins interfere with the process had long remained unknown. A breakthrough came in 2001, when Elizabeth Campbell, a research associate in Darst’s Laboratory of Molecular Biophysics, and her colleagues showed that rifamycins bind next to RNA polymerase’s active center such that the rifamycin acts like a wall, physically blocking RNA from elongating. These results supported a steric-occlusion model for rifamycin action that explained — and continues to explain — past findings.

But the newer model, proposed three years ago, describes a very different mechanism. Called the allosteric model, it proposes that rifamycins do, indeed, bind to the enzyme next to the enzyme’s active center, but instead of blocking the elongating RNA molecule, rifamycins transmit a signal to the enzyme’s active center, decreasing a magnesium ion’s ability to bind. Without the magnesium ion, Mg2+, RNA cannot be transcribed.

“It was a beautiful model, but there were parts of it that didn’t add up and those parts directly conflicted with the model published in 2001,” says lead researcher Andrey Feklistov, a postdoc in the Darst lab who conducted the research along with several colleagues at Rockefeller, the Waksman Institute of Microbiology at Rutger’s University and The Public Health Research Institute of New Jersey Medical School.

The steric-occlusion model suggested that the stronger the rifamycin binds — that is, the sturdier the wall — the better it would work to halt transcription. But according to the allosteric model proposed by a team from The Ohio State University, that wasn’t necessarily the case. Even if rifamycins bind strongly, the enzyme could still be rifamycin-resistant due to a blip along the long signaling pathway. “So we did what scientists do,” says Feklistov. “We took another look.”

By testing the same two mutant strains of RNA polymerase that the Ohio team used, ones that had mutations along the proposed signaling pathway, the Darst team found that the mutants were resistant to rifamycin precisely because the antibiotic could not bind tightly to the enzyme. “This suggests that the steric-occlusion model best explains the available biochemical and structural evidence that has been published,” says Feklistov. Moreover, the Darst team found that rifamycins have no effect on metal ion binding to the active center, in direct contradiction to the allosteric model.

Understanding the mechanism by which rifamycins kill bacteria allows scientists to better understand how the tuberculosis-causing bacteria develop resistance to the antibiotics — and develop drugs to combat this effect. “At this stage,” says Feklistov, “any evidence, positive or negative, will help focus our attention toward this goal.”


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "Rifamycin Antibiotics Attack Tuberculosis Bacteria With Walls, Not Signals." ScienceDaily. ScienceDaily, 27 August 2008. <www.sciencedaily.com/releases/2008/08/080825110423.htm>.
Rockefeller University. (2008, August 27). Rifamycin Antibiotics Attack Tuberculosis Bacteria With Walls, Not Signals. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2008/08/080825110423.htm
Rockefeller University. "Rifamycin Antibiotics Attack Tuberculosis Bacteria With Walls, Not Signals." ScienceDaily. www.sciencedaily.com/releases/2008/08/080825110423.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com
What's Different About This Latest Ebola Vaccine

What's Different About This Latest Ebola Vaccine

Newsy (Mar. 26, 2015) — A whole virus Ebola vaccine has been shown to protect monkeys exposed to the virus. Here&apos;s what&apos;s different about this vaccine. Video provided by Newsy
Powered by NewsLook.com
HIV Outbreak Prompts Public Health Emergency In Indiana

HIV Outbreak Prompts Public Health Emergency In Indiana

Newsy (Mar. 26, 2015) — Indiana Gov. Mike Pence says he will bring additional state resources to help stop the epidemic. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins