Featured Research

from universities, journals, and other organizations

Hunt For Elusive Higgs Boson -- Most Highly Sought-after Particle In Physics -- Gets Boost

Date:
September 8, 2008
Source:
Imperial College London
Summary:
The hunt for the Higgs boson, the most highly sought-after particle in physics, received a boost this month with two new results from the Tevatron particle collider at Fermilab in Illinois. Scientists working on the DZero particle detector experiment have for the first time successfully observed pairs of Z bosons at the Tevatron. Pair production of these force carrying particles is extremely rare and difficult to detect, and researchers say that having observed them represents a big step towards observing the Higgs boson itself.

Scientists based at Fermilab have made important new discoveries that take them closer to finding the Higgs boson.
Credit: Image courtesy of Imperial College London

The hunt for the Higgs boson, the most highly sought-after particle in physics, received a boost this month with the release of two new results from the Tevatron particle collider at the US Department of Energy's Fermilab in Illinois.

Scientists working on the DZero particle detector experiment, including physicists from Imperial College London, have for the first time successfully observed pairs of Z bosons at the Tevatron. Pair production of these force carrying particles is extremely rare and difficult to detect, and researchers say that having observed them represents a big step towards observing the Higgs boson itself.

Then just a week after spotting the Z boson pairs, DZero scientists, along with colleagues from the CDF collaboration at the Tevatron, were able to rule out the possibility of the Higgs boson having a mass of around 170GeV/c2 – a value which lies in the mass range scientists believe the Higgs may have. This is the first time that any experiment in the world has ruled out potential values for the mass of the Higgs boson since the Large Electron -Positron Collider at CERN proved that the Higgs could not have a mass of less than 114GeV/c2 in 2000.

Dr Gavin Davies from Imperial's Department of Physics, co-leader of the Higgs hunting group on the DZero experiment, explains: "We now know that the Higgs boson does not have a mass of 170GeV/c2. If it did have this mass, then we should have seen evidence for it at the Tevatron by now. Ruling out possible masses of the Higgs is a very important part of the hunt for this elusive particle."

The Standard Model of particle physics predicts the existence of a particle, known as the Higgs boson, which gives mass to other particles. Currently, the mechanism by which particles acquire different mass values is unknown, and finding evidence for the existence of the Higgs boson would solve this fundamental mystery of nature.

The first of the Tevatron results, where pairs of Z bosons were observed, is a big step towards finding the Higgs boson because the pairs' experimental signature and characteristics are similar to those that would be seen if the Higgs was produced. In addition, the analysis methods and techniques used to find the Z bosons pairs are similar to those for finding the Higgs too.

So the Tevatron scientists have proven that their observation methods work, and that they are capable of observing very rare processes like those required to produce the Higgs.

Creating the experimental conditions in which the Higgs boson could be observed is extremely difficult. It requires very powerful particle collisions, and super-sensitive detectors to record the results of the collisions. To find the pairs of Z bosons, the DZero detector had to search through nearly 200 trillion particle collisions.

Dr Davies says that the results from the Tevatron signal the start of a new exciting phase of Higgs physics: "The observation of the very rare ZZ process is a real stepping stone to the Higgs. Following this with the first direct Higgs mass exclusion since 2000 is tremendously exciting.

"It shows that the Tevatron experiments are very much in the race for finding the Higgs," he added.

DZero is an international experiment conducted by around 600 physicists from 90 institutions in 18 different countries. Currently around 10 Imperial physicists are involved with the experiment, based either full or part time at Fermilab.

This autumn the Large Hadron Collider (LHC) particle accelerator at CERN in Switzerland will be switched on to perform particle collisions at even higher energies than the Tevatron. Observing the Higgs boson is also a key goal for the detector experiments at CERN. A large cohort of Imperial physicists are working on the LHC detectors, including Professors Tejinder Virdee and Andrei Golutvin, who are lead scientists on the CMS and LHCb detectors respectively.


Story Source:

The above story is based on materials provided by Imperial College London. Note: Materials may be edited for content and length.


Cite This Page:

Imperial College London. "Hunt For Elusive Higgs Boson -- Most Highly Sought-after Particle In Physics -- Gets Boost." ScienceDaily. ScienceDaily, 8 September 2008. <www.sciencedaily.com/releases/2008/09/080903093433.htm>.
Imperial College London. (2008, September 8). Hunt For Elusive Higgs Boson -- Most Highly Sought-after Particle In Physics -- Gets Boost. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2008/09/080903093433.htm
Imperial College London. "Hunt For Elusive Higgs Boson -- Most Highly Sought-after Particle In Physics -- Gets Boost." ScienceDaily. www.sciencedaily.com/releases/2008/09/080903093433.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins