Featured Research

from universities, journals, and other organizations

Superconductivity Can Induce Magnetism

Date:
September 15, 2008
Source:
University of Montreal
Summary:
When an electrical current passes through a wire it emanates heat -- a principle that's found in toasters and incandescent light bulbs. Some materials, at low temperatures, violate this law and carry current without any heat loss. But this seemingly trivial property, superconductivity, is now at the forefront of our understanding of physics. Scientists now show that, contrary to previous belief, superconductivity can induce magnetism, which has raised a new quantum conundrum.

Andrea Bianchi, Department of Physics.
Credit: Image courtesy of University of Montreal

When an electrical current passes through a wire it emanates heat – a principle that's found in toasters and incandescent light bulbs. Some materials, at low temperatures, violate this law and carry current without any heat loss. But this seemingly trivial property, superconductivity, is now at the forefront of our understanding of physics.

In the journal Science, Andrea Bianchi, a professor in the Department of Physics at the Universitι de Montrιal, and his colleagues show that, contrary to previous belief, superconductivity can induce magnetism, which has raised a new quantum conundrum.

Using the Swiss spallation neutron source (SINQ) of the Paul-Scherrer Institute (PSI) in Villigen, the international research group led by Michel Kenzelmann, a scientist at the Paul Scherrer Institute and professor at the Swiss Federal Institute of Technology Zurich, found a superconductor displaying two fascinating quantum properties. First, the material in the superconducting state shows magnetic order, which is a surprise given how superconductivity and magnetism cannot easily be accommodated in the same material.

Second, SINQ's experiments show that the electron pairs that form the superconducting state have a non-zero momentum, contrary to what is observed in all other known superconductors. Such a state has been theoretically predicted years ago, but it had never been microscopically detected.

Magnetism and Superconductivity

The transport of electric current in a conductor is associated with the displacement of electrons: Collisions between these electrons and the crystal ions cause resistance and release heat. In superconductors below the transition superconducting transition temperature, the electrons are form pairs, which allow them, thanks to quantum mechanics, to synchronize their motion with the ions, and all occupy the same quantum state. Electrons in their normal state can be seen as rush-hour pedestrians in a public plaza, yet electron pairs are like couples waltzing to the rhythm of the music without colliding.

The electron has a charge, but like a tiny magnet, it also has a magnetic moment called spin. In a singlet superconductor, the electron pairs are formed by electrons of opposite spin, which cancels the pair's magnetic moment. But when the material is placed in a strong magnetic field, the spins are forced to orient themselves along the field, as the field acts on each spin individually. Usually, this breaks the pairs and destroys superconductivity. The magnetic fields inside a magnetically ordered material tends to act in the same manner and thus that superconductivity and magnetism tend to avoid each other, although they are not always mutually exclusive.

According to Michel Kenzelmann, "Superconductivity and magnetism are like two groups of predators fighting over the same territory."

Superconductivity with magnetic consequences

In the experiment reported in Science, the scientists cooled a single crystal of CeCoIn5, a metal compound consisting of cerium, cobalt and indium, to a temperature of minus 273.1 degrees, close to absolute zero. To their great surprise, they discovered that magnetism and superconductivity coexist and disappear at the same time when they heat the sample or increase the magnetic field.

This discovery is extraordinary, since magnetic order exists exclusively when this sample is in the superconducting state. In this unique case, magnetism and superconductivity do not compete with each other. Instead, superconductivity generates magnetic order.

"Our results clearly indicate that superconductivity is a condition required to establish this magnetic order," says Kenzelmann. "Our work finally offers the possibility of understanding how superconducting pairs are formed in materials where this is caused by a magnetic interaction. We also hope that our results will allow the development of new technological applications in the near future."

New pairs

The research team also made a second discovery, which is detailed in the Science article – how electron pairs in the superconducting state in a strong magnetic field have a finite momentum. In all other known superconductors, the pairs form a state with zero momentum. Predicted by theorists a few decades ago, the observation of such a state in this experiment is the first experimental proof for such a new state of matter.

These two results allow for the first time to directly address questions about the relationship between magnetism and superconductivity. The answers that will be provided in the years ahead will allow a better understanding of this fascinating aspect of quantum mechanics and could even lead to the discovery of new technologically-important superconducting materials.


Story Source:

The above story is based on materials provided by University of Montreal. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Kenzelmann et al. Coupled Superconducting and Magnetic Order in CeCoIn5. Science, 2008; DOI: 10.1126/science.1161818

Cite This Page:

University of Montreal. "Superconductivity Can Induce Magnetism." ScienceDaily. ScienceDaily, 15 September 2008. <www.sciencedaily.com/releases/2008/09/080911150055.htm>.
University of Montreal. (2008, September 15). Superconductivity Can Induce Magnetism. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2008/09/080911150055.htm
University of Montreal. "Superconductivity Can Induce Magnetism." ScienceDaily. www.sciencedaily.com/releases/2008/09/080911150055.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) — The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) — The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins