Featured Research

from universities, journals, and other organizations

Nanomedical Approach Targets Multiple Cancer Genes, Shrinks Tumors More Effectively

Date:
September 17, 2008
Source:
Penn State
Summary:
Nanoparticles filled with a drug that targets two genes that trigger melanoma could offer a potential cure for this deadly disease, according to cancer researchers. The treatment, administered through an ultrasound device, demonstrates a safer and more effective way of targeting cancer-causing genes in cancer cells without harming normal tissue.

Nanoparticles filled with a drug that targets two genes that trigger melanoma could offer a potential cure for this deadly disease, according to cancer researchers. The treatment, administered through an ultrasound device, demonstrates a safer and more effective way of targeting cancer-causing genes in cancer cells without harming normal tissue.

Related Articles


"It is a very selective and targeted approach," said Gavin Robertson, associate professor of pharmacology, pathology and dermatology, Penn State College of Medicine. "And unlike most other cancer drugs that inadvertently affect a bunch of proteins, we are able to knock out single genes."

The Penn State researchers speculated that "silencing RNA" (siRNA) -- strands of RNA molecules that knock out specific genes -- could turn off the two cancer-causing genes and potentially treat the deadly disease more effectively.

"siRNA checks the expression of the two genes, which then lowers the abnormal levels of the cancer causing proteins in cells," explained Robertson, who is lead author of the paper appearing in the Sept. 15 issue of the journal Cancer Research.

In recent years, researchers have zeroed in on two key genes -- B-Raf and Akt3 -- that cause melanoma. B-Raf, the most frequently mutated gene in melanoma, produces the mutant protein, B-Raf, which helps mole cells survive and grow but does not form melanomas on its own.

Robertson and colleagues previously found that a protein called Akt3 regulates the activity of the mutated B-Raf, which aids the development of melanoma.

The drug in this study specifically targets Akt3 and the mutant B-Raf and does therefore not affect normal cells, added Robertson, who is also director of the Foreman Foundation Melanoma Therapeutics Program at the Penn State College of Medicine Cancer Institute.

However, while knocking out specific genes may seem like a straightforward task, delivering the siRNA drug to cancerous cells is another story, because protective layers in the skin not only keep drugs out, but chemicals in the skin quickly degrade the siRNA.

To clear these two hurdles, Robertson and his team engineered hollow nano-sized particles -- nanoliposomes -- from globes of fatty acids into which they packed the siRNA. Next, the researchers used a portable ultrasound device to temporarily create microscopic holes in the surface of the skin, allowing the drug-filled particles to leak into tumor cells beneath.

"Think of it as tiny basketballs that each protect the siRNA inside from getting degraded by the skin," explained Robertson. "These basketballs fall through the holes created by the ultrasound and are taken up by the tumor cells, thereby delivering the siRNA drug into the tumor cells."

When the researchers exposed lab-generated skin -- made from human connective tissue -- containing early cancerous lesions to the treatment 10 days after the skin was created, the siRNA reduced the ability of cells containing the mutant B-Raf to multiply by nearly 60 to 70 percent, and more than halved the size of lesions after three weeks.

"This is essentially human skin with human melanoma cells, which provides an accurate picture of how the drug is acting," said Robertson.

Mice with melanoma that underwent the same treatment had their tumors shrink by nearly 30 percent when only the mutant B-Raf was targeted. There was no difference in the development of melanoma when the Akt3 gene alone was targeted, though existing tumors shrank by about 10 to 15 percent in two weeks.

However, when the researchers targeted both the Akt3 and the mutant B-Raf at the same time, they found that tumors in the mice shrank about 60 to 70 percent more than when either gene was targeted alone.

"If you knock down each of these two genes separately, you are able to reduce tumor development somewhat," Robertson said. "But knocking them down together leads to synergistic reduction of tumor development."

While human clinical trials could be years away, Robertson says the findings show the promise of personalized medicine, where patients could receive treatments designed to specifically target the errant genes or proteins for their disease.

"The problem with this cancer, like most cancers, is that if you target one protein, the cells quickly find a way around it," explained Robertson. "Most chemotherapies are ineffective because patients initially respond but then when the tumor reoccurs, the cancer does not respond at all."

In the future, Robertson believes physicians could identify three or four targets in a patient, which could be treated sequentially or in combination for a greater health benefit.

Other researchers on the paper include Melissa A. Tran, graduate student, Raghavendra Gowda, postdoctoral fellow, Arati Sharma, assistant professor, and Mark Kester, professor, all in the Department of Pharmacology; James Adair, professor of materials science and engineering; E. J. Park, graduate student, and Nadine Barrie Smith, associate professor of bioengineering, all at Penn State.

The American Cancer Society, The Foreman Foundation for Melanoma Research, and the Department of Defense Technologies for Metabolic Monitoring funded this work.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Nanomedical Approach Targets Multiple Cancer Genes, Shrinks Tumors More Effectively." ScienceDaily. ScienceDaily, 17 September 2008. <www.sciencedaily.com/releases/2008/09/080915143328.htm>.
Penn State. (2008, September 17). Nanomedical Approach Targets Multiple Cancer Genes, Shrinks Tumors More Effectively. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2008/09/080915143328.htm
Penn State. "Nanomedical Approach Targets Multiple Cancer Genes, Shrinks Tumors More Effectively." ScienceDaily. www.sciencedaily.com/releases/2008/09/080915143328.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins