Featured Research

from universities, journals, and other organizations

Key Protein Molecule Linked To Diverse Human Chronic Inflammatory Diseases

Date:
September 17, 2008
Source:
Virginia Tech
Summary:
Scientists have revealed a common connection between the cellular innate immunity network and human chronic inflammatory diseases, including atherosclerosis, Type 2 Diabetes, and neurodegenerative diseases. The finding presents a viable cellular and molecular target for the diagnosis and treatment of serious human inflammatory diseases.

Liwu Li, associate professor of biological sciences at Virginia Tech, has revealed a common connection between the cellular innate immunity network and human chronic inflammatory diseases, including atherosclerosis, Type 2 Diabetes, and neurodegenerative diseases.

The finding presents a viable cellular and molecular target for the diagnosis and treatment of serious human inflammatory diseases, according to Li.

"Researchers and physicians have long recognized that there is an association between these conditions. For example, obesity increases the risk of heart attack or stroke, Type 2 Diabetes or insulin resistance, and Alzheimer's Disease," said Li, who is the founding director of the Inflammation Center at Virginia Tech.

"Inflammation is the common mechanism," he said. "Inflammation is a double-edged sword. Proper inflammation is necessary to fend off infection and abnormal cell growth. On the other hand, excessive inflammation contributes to diverse chronic diseases, including atherosclerosis, diabetes, and lupus." However, the complex cellular and molecular networks controlling inflammation are still poorly understood, he said. "The lack of understanding impedes our progress in treating serious chronic inflammatory diseases."

In a series of studies published throughout the last decade, Li's group has defined several critical signaling networks essential for the modulation of inflammation. In particular, a key cellular protein kinase named interlukin-1 receptor associated kinase 1 (IRAK-1) was shown to be critical for processing diverse inflammatory signals, including microbial products, cytokines, and insulin. Li's group discovered that excessive IRAK-1 activation is linked with the risk of atherosclerosis and diabetes. Using transgenic mice without the IRAK-1 gene, Li's group demonstrated that IRAK-1 deficient mice are protected from developing atherosclerosis and insulin resistance.

At the molecular level, Li's laboratory discovered that IRAK-1 prefers to phosphorylate transcription factors harboring the Serine-Proline motif including STAT-3 and NFAT. Subsequently, STAT-3 and NFAT are involved in modulating the expression of distinct inflammatory mediators responsible for the excessive activation of specialized macrophages and T cells. These cells eventually contribute to diverse inflammatory symptoms including cardiovascular diseases, diabetes, Alzheimer's diseases, and lupus. "Chemical compounds targeting this molecule will have enormous therapeutic potential," Li said.

"There is still a long way to go for finding the actual cure for these diseases," he said. "That is why we are combining expertise from various disciplines, including experimental biology and computational simulation. The Inflammation Center integrates faculties with expertise in experimental molecular biology, cutting edge imaging of inflamed cells and tissues, computational simulation of cellular signaling networks, human and animal studies, and nano-technologies designing novel intervention."

Virginia Tech Intellectual Properties Inc. (VTIP) filed a patent application for Li's discovery and its use as a diagnostic tool and treatment strategy. "This technology will still take some time before there is a product," said Li.

Li's research is funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wang et al. The interleukin-1 receptor associated kinase 1 contributes to the regulation of NFAT. Molecular Immunology, 2008; 45 (15): 3902 DOI: 10.1016/j.molimm.2008.06.023

Cite This Page:

Virginia Tech. "Key Protein Molecule Linked To Diverse Human Chronic Inflammatory Diseases." ScienceDaily. ScienceDaily, 17 September 2008. <www.sciencedaily.com/releases/2008/09/080915143332.htm>.
Virginia Tech. (2008, September 17). Key Protein Molecule Linked To Diverse Human Chronic Inflammatory Diseases. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2008/09/080915143332.htm
Virginia Tech. "Key Protein Molecule Linked To Diverse Human Chronic Inflammatory Diseases." ScienceDaily. www.sciencedaily.com/releases/2008/09/080915143332.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins