Featured Research

from universities, journals, and other organizations

Dark Matter Disk In Our Galaxy, Supercomputer Simulation Shows

Date:
September 16, 2008
Source:
Royal Astronomical Society (RAS)
Summary:
The Milky Way contains a disk of "dark matter," according to new calculations by astronomers.They have used the results of a supercomputer simulation to deduce the presence of this disk.

A composite image of the dark matter disk (red contours) and the Atlas image mosaic of the Milky Way obtained as part of the Two Micron All Sky Survey (2MASS).
Credit: J. Read and O. Agertz

An international team of scientists predict that our Galaxy, the Milky Way, contains a disk of ‘dark matter’. Astronomers Dr Justin Read, Professor George Lake and Oscar Agertz of the University of Zurich, and Dr Victor Debattista of the University of Central Lancashire use the results of a supercomputer simulation to deduce the presence of this disk.

They explain how it could allow physicists to directly detect and identify the nature of dark matter for the first time.

Unlike the familiar ‘normal’ matter that makes up stars, gas and dust, ‘dark’ matter is invisible but its presence can be inferred through its gravitational influence on its surroundings. Physicists believe that it makes up 22% of the mass of the Universe (compared with the 4% of normal matter and 74% comprising the mysterious ‘dark energy’). But, despite its pervasive influence, no-one is sure what dark matter consists of.

Prior to this work, it was thought that dark matter forms in roughly spherical lumps called ‘halos’, one of which envelopes the Milky Way. But this ‘standard’ theory is based on supercomputer simulations that model the gravitational influence of the dark matter alone. The new work includes the gravitational influence of the stars and gas that also make up our Galaxy.

Stars and gas are thought to have settled into disks very early on in the life of the Universe and this affected how smaller dark matter halos formed. The team’s results suggest that most lumps of dark matter in our locality merged to form a halo around the Milky Way. But the largest lumps were preferentially dragged towards the galactic disk and were then torn apart, creating a disk of dark matter within the Galaxy.

“The dark disk only has about half of the density of the dark matter halo, which is why no one has spotted it before,” said lead author Justin Read. “However, despite its low density, if the disk exists it has dramatic implications for the detection of dark matter here on Earth.”

The Earth and Sun move at some 220 kilometres per second along a nearly circular orbit about the centre of our Galaxy. Since the dark matter halo does not rotate, from an Earth-based perspective it feels as if we have a ‘wind’ of dark matter flowing towards us at great speed. By contrast, the ‘wind’ from the dark disk is much slower than from the halo because the disk co-rotates with the Earth.

“It's like sitting in your car on the highway moving at a hundred kilometres an hour”, said team member Dr Victor Debattista. “It feels like all of the other cars are stationary because they are moving at the same speed.”

This abundance of low-speed dark matter particles could be a real boon for researchers because they are more likely to excite a response in dark matter detectors than fast-moving particles. “Current detectors cannot distinguish these slow moving particles from other background ‘noise’,” said Prof. Laura Baudis, a collaborator at the University of Zurich and one of the lead investigators for the XENON direct detection experiment, which is located at the Gran Sasso Underground Laboratory in Italy. “But the XENON100 detector that we are turning on right now is much more sensitive. For many popular dark matter particle candidates, it will be able to see something if it’s there.”

This new research raises the exciting prospect that the dark disk – and dark matter – could be directly detected in the very near future.


Story Source:

The above story is based on materials provided by Royal Astronomical Society (RAS). Note: Materials may be edited for content and length.


Journal Reference:

  1. J. I. Read, G. Lake, O. Agertz and Victor P. Debattista. Thin, thick and dark discs in %u039BCDM. Monthly Notices of the Royal Astronomical Society: Letters, Volume 389 Issue 3, Pages 1041 - 1057 DOI: 10.1111/j.1365-2966.2008.13643.x

Cite This Page:

Royal Astronomical Society (RAS). "Dark Matter Disk In Our Galaxy, Supercomputer Simulation Shows." ScienceDaily. ScienceDaily, 16 September 2008. <www.sciencedaily.com/releases/2008/09/080915210506.htm>.
Royal Astronomical Society (RAS). (2008, September 16). Dark Matter Disk In Our Galaxy, Supercomputer Simulation Shows. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2008/09/080915210506.htm
Royal Astronomical Society (RAS). "Dark Matter Disk In Our Galaxy, Supercomputer Simulation Shows." ScienceDaily. www.sciencedaily.com/releases/2008/09/080915210506.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins