Featured Research

from universities, journals, and other organizations

Why Some Primates, But Not Humans, Can Live With Immunodeficiency Viruses And Not Progress To AIDS

Date:
September 17, 2008
Source:
Emory University
Summary:
Some primate species, including sooty mangabeys, harbor simian immunodeficiency viruses but remain healthy, unlike rhesus macaques. The immune systems of sooty mangabeys become significantly less activated during SIV infection than the immune systems of macaques. The less vigorous immune response to SIV in mangabeys may be an effective evolutionary response to a virus that resists clearance by antiviral immune responses. New treatment strategies that would steer the immune system away from over-activation could protect against the unintended damage caused by host immune responses.

Sooty mangabey.
Credit: Image courtesy of Wikimedia Commons

Key differences in immune system signaling and the production of specific immune regulatory molecules may explain why some primates are able to live with an immunodeficiency virus infection without progressing to AIDS-like illness, unlike other primate species, including rhesus macaques and humans, that succumb to disease.

Related Articles


Following the identification of HIV (Human Immunodeficiency Virus) as the cause of AIDS 25 years ago, an extensive search was undertaken to identify the source of the virus. These studies led to the discovery that chimpanzees and sooty mangabeys are infected in the wild with simian immunodeficiency viruses (SIV), whose transmission to humans and macaques leads to AIDS.

Surprisingly, the natural hosts for the AIDS viruses, such as the mangabeys and numerous other African primate species who have been found to harbor SIVs in the wild, remain healthy despite infection. Understanding how the natural hosts evolved to resist the development of immunodeficiency disease has long represented a key unsolved mystery in our understanding of AIDS. Furthermore, definition of the mechanisms by which they resist disease could help explain the mechanisms underlying AIDS progression in humans.

A team of scientists from Yerkes National Primate Research Center and the Emory Vaccine Center has discovered that the immune systems of sooty mangabeys are activated to a significantly lower extent during SIV infection than are the immune systems of rhesus macaques, and that this difference may explain why SIV and HIV infection leads to AIDS in some primate species but not others.

"During both HIV infection in humans and SIV infection in macaques, the host immune system becomes highly activated, experiences increased destruction and decreased production of key immune effector cells and progressively fails as a result. In contrast, natural hosts for SIV infection, like sooty mangabeys, do not exhibit aberrant immune activation and do not develop AIDS despite high levels of ongoing SIV replication. Our studies sought to understand the basis for the very different responses to AIDS virus infections in different species," says Mark Feinberg, MD, PhD, the paper's senior author. Feinberg is a former investigator at the Emory Vaccine Center and the Yerkes Research Center and a professor of medicine at the Emory University School of Medicine. He currently serves as vice president of medical affairs and policy for vaccines and infectious diseases at Merck & Co., Inc.

The reasons are found in significant differences in immune signaling in a specific type of dendritic cells in AIDS-susceptible or resistant host species. Dendritic cells are part of the immune system that play a key role in alerting the body to the presence of invading viruses or bacteria, and in initiating immune responses that enable clearance of these infections. They detect the invaders using molecules called Toll-like receptors.

Feinberg's team found that in sooty mangabeys, dendritic cells produce much less interferon alpha--an alarm signal to the rest of the immune system--in response to SIV. As a result, the dendritic cells are not activated during the initial or chronic stages of SIV infection, and mangabeys fail to mount a significant immune response to the virus. In contrast to mangabeys, dendritic cells from humans and macaques that are susceptible to developing AIDS are readily activated by HIV and SIV.

The difference in whether or not dendritic cells become activated upon AIDS virus exposure in specific primate hosts appears to result from species-specific differences in patterns of Toll-like-receptor signaling. Because host immune responses are unable to clear AIDS virus infections, ongoing virus replication leads to unrelenting activation of the immune system in humans and macaques.

Unfortunately, rather than promoting clearance of the infection, chronic dendritic cell stimulation may result in chronic immune activation and significant unintended damage to the immune system in AIDS-susceptible species. Such chronic immune activation is now recognized to be a major driving force for the development of AIDS.

The observation that mangabey dendritic cells are less susceptible to activation by SIV may explain why mangabeys do not exhibit abnormal immune activation and do not develop AIDS. Thus, in mangabeys, the generation of a less vigorous immune response to SIV may represent an effective evolutionary response to a virus that is so resistant to clearance by antiviral immune responses.

The authors suggest new treatment strategies that would steer the immune system away from over-activation, thereby protecting against the unintended damage caused by host immune responses. Such treatment approaches that focus on the host response to the AIDS virus may provide a valuable means of complementing the use of antiretroviral drugs that focus directly on inhibition of virus replication.

Understanding the particular details of Toll-like receptor signaling pathways in the mangabeys may help guide the development of specific therapeutic approaches that could beneficially limit chronic immune activation in HIV-infected humans.

"Better understanding of the biological basis by which sooty mangabeys and the numerous primate species that represent natural hosts for AIDS virus infections have evolved to resist disease promises to teach us a great deal about the emergence of the AIDS pandemic, and about the mechanisms underlying AIDS progression in humans. In addition, such insights will hopefully help inform new approaches to treat HIV infection most effectively." Feinberg says.

"Also, better understanding how natural hosts for SIV remain healthy may provide clues as to the future evolutionary trajectory of human populations in response to the profound selective pressures now being felt in regions of the world where the tragic consequences of HIV infection are most severe."

First authors of the paper are Judith N. Mandl from the Graduate Program in Population Biology, Ecology and Evolution at Emory University and Ashley P. Barry who formerly was with the Emory Vaccine Center and Yerkes National Primate Research Center.

The research was funded by the National Institutes of Health, and included support provided to the Yerkes National Primate Research Center and the Emory Center for AIDS Research.


Story Source:

The above story is based on materials provided by Emory University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mandl et al. Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nature Medicine, 2008; DOI: 10.1038/nm.1871

Cite This Page:

Emory University. "Why Some Primates, But Not Humans, Can Live With Immunodeficiency Viruses And Not Progress To AIDS." ScienceDaily. ScienceDaily, 17 September 2008. <www.sciencedaily.com/releases/2008/09/080916143900.htm>.
Emory University. (2008, September 17). Why Some Primates, But Not Humans, Can Live With Immunodeficiency Viruses And Not Progress To AIDS. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2008/09/080916143900.htm
Emory University. "Why Some Primates, But Not Humans, Can Live With Immunodeficiency Viruses And Not Progress To AIDS." ScienceDaily. www.sciencedaily.com/releases/2008/09/080916143900.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins