Featured Research

from universities, journals, and other organizations

Genetic Testing Anywhere: Micro-sizes Hand-held 'Lab-on-a-chip' Devices Under Development

Date:
September 26, 2008
Source:
University of Virginia
Summary:
Using new "lab on a chip" technology, chemists hope to create a hand-held device that may eventually allow physicians, crime scene investigators, pharmacists, even the general public to quickly and inexpensively conduct DNA tests from almost anywhere, without need for a complex and expensive central laboratory.

James Landers, University of Virginia professor of chemistry and mechanical engineering and associate professor of pathology.
Credit: Photo by Melissa Maki

Using new "lab on a chip" technology, James Landers hopes to create a hand-held device that may eventually allow physicians, crime scene investigators, pharmacists, even the general public, to quickly and inexpensively conduct DNA tests from almost anywhere, without need for a complex and expensive central laboratory.

Related Articles


"We are simplifying and miniaturizing the analytical processes so we can do this work in the field, away from traditional laboratories, with very fast analysis times, and at a greatly reduced cost," said Landers, a University of Virginia professor of chemistry and mechanical engineering and associate professor of pathology.

Landers published a review this month of his research and the emerging field of lab-on-a-chip technology in the journal Analytical Chemistry.

"This area of research has matured enough during the last five years to allow us to seriously consider future possibilities for devices that would allow sample-in, answer-out capabilities from almost anywhere," he said.

Landers and a team of researchers at U.Va., including mechanical and electrical engineers, with input from pathologists and physicians, are designing a hand-held device — based on a unit the size of a microscope slide — that houses many of the analytical tools of an entire laboratory, in extreme miniature. The unit can test, for example, a pin-prick-size droplet of blood, and within an hour provide a DNA analysis.

"In creating these automated micro-fluidic devices, we can now begin to do macro-chemistry at the microscale," Landers said.

Such a device could be used in a doctor's office, for example, to quickly test for an array of infectious diseases, such as anthrax, avian flu or HIV, as well as for cancer or genetic defects. Because of the quick turnaround time, a patient would be able to wait only a short time onsite for a diagnosis. Appropriate treatment, if needed, could begin immediately.

Currently, test tube-size fluid samples are sent to external labs for analysis, usually requiring a 24- to 48-hour wait for a result.

"Time is of the essence when dealing with an infectious disease such as meningitis," Landers said. "We can greatly reduce that test time, and reduce the anxiety a patient experiences while waiting."

Landers said the research also dovetails with the trend toward "personalized medicine," in which medical care increasingly is tailored to the specific genetic profile of a patient. Such highly specialized personalized care can allow physicians to develop specific therapies for patients who might be susceptible to, for example, particular types of cancers.

Simplifying genetic testing, and reducing the costs of such tests, could help pave the way toward routine delivery of such personalized care based on an individual's genetic profile.

Hand-held micro labs also would be useful to crime scene investigators who could collect and analyze even a tiny sample of blood or semen on the scene, enter the finding into a genetic database, and possibly identify the perpetrator very shortly after a crime has occurred.

Likewise, agricultural biotechnologists could do very rapid genetic analysis on thousands of hybrid plants that have desirable properties such as drought and disease resistance, Landers said.

"We can now do lab work in volumes that are thousands of times smaller than would normally be used in a regular lab setup, and can do it up to 100 times faster," he said. "As we improve our techniques and capabilities, the costs of fabricating these micro-analysis devices will drop enough to employ them routinely in a wide variety of settings."

Landers even envisions home DNA test kits, possibly available for purchase from pharmacies, that would allow individuals to self-test for flu or other diseases.

His colleagues at U.Va. include Mathew Begley, professor of mechanical engineering; Molly Hughes, assistant professor of internal medicine, and Sanford Feldman, director of the Center for Comparative Medicine.


Story Source:

The above story is based on materials provided by University of Virginia. Note: Materials may be edited for content and length.


Cite This Page:

University of Virginia. "Genetic Testing Anywhere: Micro-sizes Hand-held 'Lab-on-a-chip' Devices Under Development." ScienceDaily. ScienceDaily, 26 September 2008. <www.sciencedaily.com/releases/2008/09/080919183815.htm>.
University of Virginia. (2008, September 26). Genetic Testing Anywhere: Micro-sizes Hand-held 'Lab-on-a-chip' Devices Under Development. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2008/09/080919183815.htm
University of Virginia. "Genetic Testing Anywhere: Micro-sizes Hand-held 'Lab-on-a-chip' Devices Under Development." ScienceDaily. www.sciencedaily.com/releases/2008/09/080919183815.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins