Featured Research

from universities, journals, and other organizations

Discovery May Help Diabetic Gastric Problem

Date:
September 29, 2008
Source:
Mayo Clinic
Summary:
Researchers have found what may provide a solution to one of the more troubling complications of diabetes -- delayed gastric emptying or gastroparesis. The researchers showed in animal models that a red blood cell derivative increases production of a key molecule, normalizing the digestive process.

Mayo Clinic researchers have found what may provide a solution to one of the more troubling complications of diabetes -- delayed gastric emptying or gastroparesis. The researchers showed in animal models that a red blood cell derivative increases production of a key molecule, normalizing the digestive process.

Gastroparesis occurs when the stomach retains food for longer periods. When that food eventually passes into the small intestine, insulin is released. Because the passage of food out of the stomach becomes unpredictable, maintaining a proper blood glucose level -- critical for controlling diabetes -- also becomes difficult. Gastroparesis can cause pain, nausea, vomiting, stomach spasms and weight loss due to inadequate absorption of nutrients. The abnormally high blood glucose levels cause chemical changes in nerves and in pacemaker cells which regulate digestive processes in the gut, and damage blood vessels that carry oxygen and nutrients to cells.

"If these data are confirmed in humans, it may point toward a treatment for this difficult problem," says Gianrico Farrugia, M.D., Mayo Clinic gastroenterologist and senior author on the study. "Our goal is to normalize gastric emptying and therefore improve a patient's quality of life and glucose control."

Science Behind the Findings

Previous studies in animals and humans showed that two aspects of gastroparesis were: 1) loss of Kit, a marker for interstitial cells of Cajal (ICC), and 2) loss of expression of neuronal nitric oxide synthase (nNOS). ICC cells produce electrical signals that regulate muscle contraction in the digestive tract. nNOS generates nitric oxide, which transmits nerve impulses in the digestive tract. Both are important for normal functioning but can be depleted by oxidative stress (an imbalance in ionic charges at the molecular level), a problem common in diabetes that also can lead to heart and kidney damage.

The research team decided to test a molecule known to protect cells against oxidative injury -- heme oxygenase-1 (HO1). The team measured gastric emptying in a set of diabetic mice and then looked at expression of HO1. Results showed that production of HO1 was lost in all mice with gastroparesis and nNOS expression was decreased. When the team induced HO1 production by introducing hemin, a red blood derivative, gastric emptying returned to normal and Kit and nNOS expression were restored, despite the diabetes. The team says that future research should target the HO1 pathway as a means of reversing the affects of diabetic gastroparesis.

The findings appear in the current online issue of the journal Gastroenterology.

Others researchers were Kyoung Moo Choi, Ph.D.; Simon Gibbons, Ph.D.; Tien Hguyen; Gary Stoltz; Matthew Lurken; Tamas Ordog, M.D.; and Joseph Szurszewski, Ph.D., all of Mayo Clinic. The research was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Mayo Clinic. Note: Materials may be edited for content and length.


Cite This Page:

Mayo Clinic. "Discovery May Help Diabetic Gastric Problem." ScienceDaily. ScienceDaily, 29 September 2008. <www.sciencedaily.com/releases/2008/09/080925104311.htm>.
Mayo Clinic. (2008, September 29). Discovery May Help Diabetic Gastric Problem. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2008/09/080925104311.htm
Mayo Clinic. "Discovery May Help Diabetic Gastric Problem." ScienceDaily. www.sciencedaily.com/releases/2008/09/080925104311.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins