Featured Research

from universities, journals, and other organizations

Micro Honeycomb Materials Enable New Physics In Aicraft Sound Reduction

Date:
September 30, 2008
Source:
Georgia Institute of Technology Research News
Summary:
Researchers are developing innovative honeycomb structures that could make possible a new approach to noise reduction in aircraft. Composed of many tiny tubes, the structures can reduce sound more effectively than conventional methods.

Georgia Tech Research Institute research engineer Jason Nadler has developed a new microchanneled material that reduces aircraft engine noise by wearing it down through a process called viscous shear.
Credit: Georgia Tech Photo: Gary Meek

Noise from commercial and military jet aircraft causes environmental problems for communities near airports, obliging airplanes to follow often complex noise-abatement procedures on takeoff and landing. It can also make aircraft interiors excessively loud.

To address this situation, engineers at the Georgia Tech Research Institute (GTRI) are turning to innovative materials that make possible a new approach to the physics of noise reduction. They have found that honeycomb-like structures composed of many tiny tubes or channels can reduce sound more effectively than conventional methods.

"This approach dissipates acoustic waves by essentially wearing them out," said Jason Nadler, a GTRI research engineer. "It's a phenomenological shift, fundamentally different from traditional techniques that absorb sound using a more frequency-dependent resonance."

The two-year project is sponsored by EADS North America, the U.S. operating entity of EADS.

Most sound-deadening materials – such as foams or other cellular materials comprising many small cavities – exploit the fact that acoustic waves resonate through the air on various frequencies, Nadler explains.

Just as air blowing into a bottle produces resonance at a particular tone, an acoustic wave hitting a cellular surface will resonate in certain-size cavities, thereby dissipating its energy. An automobile muffler, for example, uses a resonance-dependent technique to reduce exhaust noise.

The drawback with these traditional noise-reduction approaches is that they only work with some frequencies – those that can find cavities or other structures in which to resonate.

Nadler's research involves broadband acoustic absorption, a method of reducing sound that doesn't depend on frequencies or resonance. In this approach, tiny parallel tubes in porous media such as metal or ceramics create a honeycomb-like structure that traps sound regardless of frequency. Instead of resonating, sound waves plunge into the channels and dissipate through a process called viscous shear.

Viscous shear involves the interaction of a solid with a gas or other fluid. In this case, a gas – sound waves composed of compressed air – contacts a solid, the porous medium, and is weakened by the resulting friction.

"It's the equivalent of propelling a little metal sphere down a rubber hose when the sphere is just a hair bigger than the rubber hose," Nadler explained. "Eventually the friction and the compressive stresses of contact with the tube would stop the sphere."

This technique, Nadler adds, is derived from classical mechanical principles governing how porous media interact with gases – such as the air through which sound waves move. Noise abatement using micro-scale honeycomb structures represents a new application of these principles.

"You need to have the hole big enough to let the sound waves in, but you also need enough surface area inside to shear against the wave," he said. "The result is acoustic waves don't resonate; they just dissipate."

In researching this approach, Nadler constructed an early prototype from off-the-shelf capillary tubes, which readily formed a low-density, honeycomb-like structure. Further research showed that the ideal material for broadband acoustic absorption would require micron-scale diameter tubes and a much lower structural density.

Creating such low-density structures presents an interesting challenge, Nadler says. It requires a material that's light, strong enough to enable the walls between the tubes to be very thin, and yet robust enough to function reliably amid the high-temperature, aggressive environments inside aircraft engines.

Among the likely candidates are superalloys, materials that employ unusual blends of metals to achieve desired qualities such as extreme strength, tolerance of high temperatures and corrosion resistance.

Nadler has developed what could be the world's first superalloy micro honeycomb using a nickel-base superalloy. At around 30 percent density, the material is very light – a clear advantage for airborne applications – and also very strong and heat resistant.

He estimates this new approach could attenuate aircraft engine noise by up to 30 percent. Micro-honeycomb material could also provide another means to protect the aircraft in critical areas prone to impact from birds or other foreign objects by dissipating the energy of the collision.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology Research News. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology Research News. "Micro Honeycomb Materials Enable New Physics In Aicraft Sound Reduction." ScienceDaily. ScienceDaily, 30 September 2008. <www.sciencedaily.com/releases/2008/09/080929163717.htm>.
Georgia Institute of Technology Research News. (2008, September 30). Micro Honeycomb Materials Enable New Physics In Aicraft Sound Reduction. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2008/09/080929163717.htm
Georgia Institute of Technology Research News. "Micro Honeycomb Materials Enable New Physics In Aicraft Sound Reduction." ScienceDaily. www.sciencedaily.com/releases/2008/09/080929163717.htm (accessed September 15, 2014).

Share This



More Matter & Energy News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) — Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins