Featured Research

from universities, journals, and other organizations

'Artificial Nose' Progress: Engineers Mass-produce Smell Receptors

Date:
October 1, 2008
Source:
Massachusetts Institute of Technology
Summary:
Biological engineers have found a way to mass-produce smell receptors in the laboratory, an advance that paves the way for "artificial noses" to be created and used in a variety of settings.

MIT biological engineers have found a way to mass-produce smell receptors in the laboratory, an advance that paves the way for "artificial noses" to be created and used in a variety of settings.
Credit: iStockphoto/Ron Hohenhaus

MIT biological engineers have found a way to mass-produce smell receptors in the laboratory, an advance that paves the way for "artificial noses" to be created and used in a variety of settings.

Related Articles


The work could also allow scientists to unlock the mystery of how the sense of smell can recognize a seemingly infinite range of odors.

"Smell is perhaps one of the oldest and most primitive senses, but nobody really understands how it works. It still remains a tantalizing enigma," said Shuguang Zhang, associate director of MIT's Center for Biomedical Engineering and senior author of a paper on the work appearing recently online in the Proceedings of the National Academy of Sciences (PNAS).

Artificial noses could one day replace drug- and explosive-sniffing dogs, and could have numerous medical applications, according to Zhang and his colleagues. DARPA recently approved funding for the team's MIT (microfluidic-integrated transduction) RealNose project.

Until now, efforts to understand the molecular basis of smell have been stymied by the difficulty in working with the proteins that detect odors, known as olfactory receptors.

"The main barrier to studying smell is that we haven't been able to make enough receptors and purify them to homogeneity. Now, it's finally available as a raw material for people to utilize, and should enable many new studies into smell research," said Brian Cook, who just defended his MIT PhD thesis based on this work.

Smell is one of the most complex and least-understood senses. Humans have a vast olfactory system that includes close to 400 functional genes, more than are dedicated to any other function. Animals such as dogs and mice have around 1,000 functional olfactory receptor genes.

That variety of receptors allows humans and animals to discern tens of thousands of distinct odors. Each odor activates multiple receptors and this pattern of activation creates a signature that the brain can recognize as a particular scent.

The olfactory receptors that bind to odor molecules are membrane proteins, which span the cell surface. Since cell membranes are composed of a bilayer of fatty lipid molecules, the receptor proteins are highly hydrophobic (water-fearing).

When such proteins are removed from the cell and placed in water-based solutions, they clump up and lose their structure, said Liselotte Kaiser, lead author of the PNAS paper. That makes it very difficult to isolate the proteins in quantities large enough to study them in detail.

Kaiser and others spent several years developing a method to isolate and purify the proteins by performing each step in a hydrophobic detergent solution, which allows the proteins to maintain their structure and function.

The technique reported this week in PNAS involves a cell-free synthesis using commercially available wheat germ extract to produce a particular receptor, then isolating the protein through several purification steps. The method can rapidly produce large amounts of protein — enough to start structural and functional studies.

The team has also demonstrated a similar method that uses engineered mammalian cells to produce the receptors. That method, reported in PLoS One in August, takes more time and labor than the cell-free approach, but could have advantages in that the receptor is processed more naturally.

In future work, the team plans to work with researchers worldwide, including MIT's Media Lab and Department of Biology, to develop a portable microfluidic device that can identify an array of different odors. Such a device could be used in medicine for the early diagnosis of certain diseases that produce distinctive odors, such as diabetes and lung, bladder and skin cancers, Zhang said. There are also a wide range of industrial applications for such a smell-based biosensing device, he said.

Other authors of the PNAS paper are Johanna Graveland-Bikker, a postdoctoral fellow at MIT, visiting graduate students Dirk Steuerwald and Melanie Vanberghem, and Kara Herlihy of GE Healthcare Biacore.

The research was funded by the ROHM Corporation (Japan), the Knut and Alice Wallenberg Foundation (Sweden), the Netherlands Organization for Scientific Research, and a John Simon Guggenheim Fellowship. Joyce and Roger Kiley '60, MS '61 provided pure odorants.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "'Artificial Nose' Progress: Engineers Mass-produce Smell Receptors." ScienceDaily. ScienceDaily, 1 October 2008. <www.sciencedaily.com/releases/2008/09/080929212958.htm>.
Massachusetts Institute of Technology. (2008, October 1). 'Artificial Nose' Progress: Engineers Mass-produce Smell Receptors. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2008/09/080929212958.htm
Massachusetts Institute of Technology. "'Artificial Nose' Progress: Engineers Mass-produce Smell Receptors." ScienceDaily. www.sciencedaily.com/releases/2008/09/080929212958.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Museum Shares Terrifying Goblin Shark With the World

Australian Museum Shares Terrifying Goblin Shark With the World

Buzz60 (Mar. 4, 2015) The Australian Museum has taken in its fourth-ever goblin shark, a rare fish with an electricity-sensing snout and &apos;alien-like&apos; jaw. Mike Janela (@mikejanela) takes a look. Video provided by Buzz60
Powered by NewsLook.com
Prince William Calls for Unified Effort Against Illegal Wildlife Trade

Prince William Calls for Unified Effort Against Illegal Wildlife Trade

Reuters - Entertainment Video Online (Mar. 4, 2015) Britain&apos;s Prince William pledges to unite against illegal wildlife trade on the final day of his visit to China. Rough cut - no reporter narration Video provided by Reuters
Powered by NewsLook.com
Rare Goblin Shark Found in Australia

Rare Goblin Shark Found in Australia

AFP (Mar. 3, 2015) A goblin shark, a rare sea creature described as an &apos;alien of the deep&apos; is found off Australia and delivered to the Australian Museum in Sydney. Duration: 01:25 Video provided by AFP
Powered by NewsLook.com
Kenya President Sets Fire to 15 Tonnes of Elephant Ivory

Kenya President Sets Fire to 15 Tonnes of Elephant Ivory

AFP (Mar. 3, 2015) Kenyan President Uhuru Kenyatta set fire to a giant pile of 15 tonnes of elephant ivory Tuesday, vowing to destroy the country&apos;s entire stockpile of illegal tusks by the year&apos;s end. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins