Featured Research

from universities, journals, and other organizations

MRI Spots Early Breast Cancer In Mice

Date:
October 2, 2008
Source:
University of Chicago Medical Center
Summary:
A new magnetic resonance imaging procedure can detect very early breast cancer in mice, including ductal carcinoma in situ, a precursor to invasive cancer. Some of the tumors detected were less than 300 microns in diameter, the smallest cancers ever detected by MRI.

MRI of DCIS in mouse mammary gland.
Credit: Greg Karczmar, University of Chicago Medical Center

A new magnetic resonance imaging procedure can detect very early breast cancer in mice, including ductal carcinoma in situ (DCIS), a precursor to invasive cancer. Some of the tumors detected were less than 300 microns in diameter, the smallest cancers ever detected by MRI.

The technique is helping researchers study the natural history of DCIS in order to understand which tumors will become invasive cancers and require surgery, and which tumors will not. It will also be used to assess the effects of preventive therapies, such a green tea, on the development of early breast cancers. It may eventually enhance the power of MRI as a breast cancer screening tool.

"We found that MRI can reliably detect the microscopic stages of both in situ and invasive murine mammary cancers with high sensitivity," researchers from the University of Chicago Medical Center report in the September 9, 2008, issue of Physics in Medicine and Biology. "These experiments provide proof of principle that microscopic mammary tumors can indeed be detected and followed in a mouse model of breast cancer."

"These are very small tumors," said cancer specialist and study co-author Suzanne Conzen, MD, associate professor of medicine at the University of Chicago Medical Center. "They are much too small to feel or even to see without a microscope."

About 20 percent of all newly diagnosed breast cancers are DCIS, which has the best prognosis of any breast cancer with long-term survival rates of 97 to 99 percent. MRI is already used as a screening tool for many women at high risk for breast cancer, but more sensitive tests that could find cancers earlier, when they are more treatable, could increase survival.

"We decided to try to push the technology a step or two," said Greg Karczmar, PhD, professor or radiology and medical physics at the University of Chicago Medical Center, "to see if we could get good pictures of something people didn't believe could be imaged."

His colleagues, physicist Xiaobing Fan and medical physics graduate student Sunny Jansen, developed a special "birdcage" coil for MRI of the mouse mammary glands, and the team began testing a wide range of protocols for getting accurate images.

Jansen, who came to the University as an astrophysics graduate student then switched to medical physics, worked with Karczmar and Gillian Newstead, MD, director of breast imaging at the Medical Center, to find the best ways to get images that could distinguish between cancer, normal breast tissue and fat.

Using Jansen's protocol--which became her PhD thesis--the team scanned 12 transgenic mice that were genetically predisposed to developing breast cancer. Then they worked with pathologist Thomas Kraus, MD, to compare the MRI images with microscopic examination of the actual tissues.

They found that, when optimal methods were used, both DCIS and early invasive tumors "appeared clearly against a darker background." In those 12 mice, MRI was able to detect the sole relatively large tumor, 17 out of 18 small tumors that were less than 1 millimeter in size, and 13 out of 16 milk ducts that were distended with carcinoma in situ, including some tumors less than 300 microns in width, about one-third of a millimeter.

Just as important, there were no false positives. "An MR finding," the authors note, "corresponded to cancer in all glands examined."

The initial study was done with a small-bore MRI system with a 4.7 Tesla magnet, about twice the strength of a high-end clinical imaging device. Earlier this year, the team began using a new 9.4 Tesla MRI.

At that point "we began to see these tumors in exquisite detail," said Karczmar, "as small as 100 microns. We could see the ducts, and we could see tiny beads of cancer within the ducts."

Unlike previous MRI studies of tumors in mice, the UCMC team was able to detect very tiny naturally occurring cancers, and these tumors were excellent models for human breast cancer. Although the mice used were laboratory animals bred to develop breast cancer, the tumors they developed were "realistic models of the most frequently detected human cancers," the authors note. "The morphology of these early murine mammary cancers on MRI is similar to the MR presentation of early human breast cancer."

"Although still at an early stage," said Newstead, "this approach has the potential to produce significant advances in breast imaging, as well as to help us understand cancer development and study the response to therapy."

The National Institutes of Health, the Department of Defense, the Segal Foundation, the Florsheim Foundation and the University of Chicago Cancer Research Center supported the research. Additional authors include Marta Zamora, Sean Foxley, and Jonathan Rover, all of the University of Chicago.


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Chicago Medical Center. "MRI Spots Early Breast Cancer In Mice." ScienceDaily. ScienceDaily, 2 October 2008. <www.sciencedaily.com/releases/2008/10/081001093614.htm>.
University of Chicago Medical Center. (2008, October 2). MRI Spots Early Breast Cancer In Mice. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2008/10/081001093614.htm
University of Chicago Medical Center. "MRI Spots Early Breast Cancer In Mice." ScienceDaily. www.sciencedaily.com/releases/2008/10/081001093614.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins