Featured Research

from universities, journals, and other organizations

Preserved By Ice: Glacial Dams Helped Prevent Erosion Of Tibetan Plateau

Date:
October 12, 2008
Source:
University of Washington
Summary:
New research suggests that the edge of the Tibetan plateau might have been preserved for thousands of years by ice and glacial debris at the mouth of many tributaries to the Tsangpo River. Those deposits appear to have acted as dams that prevented the rapidly traveling Tsangpo from carving upstream into the plateau.

A shortened moraine dam on the Tsangpo River stands amid the Himalaya mountains at Namche Barwa in Tibet, at the head of the Tsangpo gorge.
Credit: Bernard Hallet/University of Washington

The Tsangpo River is the highest major river in the world, starting at 14,500 feet elevation and plunging to the Bay of Bengal, scouring huge amounts of rock and soil along the way. Yet in its upper reaches, the powerful Tsangpo seems to have had little effect on the elevation of the Tibetan Plateau.

Related Articles


New research suggests that the plateau edge might have been preserved for thousands of years by ice during glacial advances and by glacial debris deposited at the mouth of many Tsangpo tributaries during warmer times when glaciers retreated. Those debris walls, or moraines, acted as dams that prevented the rapidly traveling water in the main Tsangpo gorge from carving upstream into the plateau.

"At the edge of the plateau, the river's erosion has been defeated because the dams have flattened the river's slope and reduced its ability to cut into the surrounding terrain, making it more like a lake," said David Montgomery, a University of Washington geomorphologist.

Montgomery is co-author of a paper in the Oct. 9 issue of Nature that describes a new hypothesis of why the Tibetan Plateau has maintained its elevation when it appears it should have been worn down in the area of the Tsangpo system.

The paper's lead author is Oliver Korup of the Swiss Federal Institute for Snow and Avalanche Research in Davos, Switzerland. The work was financed in part by the European Commission and the National Science Foundation in the U.S.

The researchers focused on the three primary rivers of the Tsangpo system, the Yarlung Tsangpo and its two major tributaries, the Yigong Tsangpo and the Parlung Tsangpo. The scientists mapped geologic evidence of more than 300 natural dams, including 260 moraines, that have formed repeatedly at the mouths of tributaries in the last 10,000 years to block water flow on the three main streams.

The first evidence of the dams was found at the edge of the Tibetan Plateau, and additional evidence continued to be found upstream, Montgomery said. The dams essentially formed giant lakes along the river and prevented the water from carving into bedrock.

"The glaciers seem to have helped preserve the edge of the plateau by keeping the river from ripping into it," he said. "This isn't the explanation for why the rest of the plateau is so well preserved, but it might work for this area where the Tsangpo crosses the edge of the plateau."

There are two well-recognized mechanisms that typically are thought to be responsible for preserving a feature such as the edge of the Tibetan Plateau. But one of them, the plateau's arid climate, is not to blame because the Tsangpo is already a large river at the point that it enters the world's deepest and fastest-eroding gorge. The other conventional explanation, that tectonic faults continually push new rock to the surface and thus offset any erosion by the river, might be at work in concert with the glacial damming, the scientists believe.

In the Tsangpo gorge, also called Yarlung Tsangpo Grand Canyon, the river plunges from about 10,000 feet to about 1,000 feet in a span of 150 miles. Eventually the river becomes the Brahmaputra River, flowing through India and Bangladesh and into the Bay of Bengal.

"Up in the gorge, the river is very steep and the erosion is very high, and one would think that back through geologic time it should have sliced upstream into the Tibetan Plateau," Montgomery said.

The question is why that didn't happen. Korup and Montgomery suspect that the glacial dams on tributaries right to the edge of the plateau prevented such pronounced erosion.

"It's a transition from where the river is doing all the erosion at lower elevations to where the glaciers are doing all the erosion at high elevations, and the glaciers are limited on how deeply they erode," Montgomery said. "They shave off the top but they don't erode farther down, and the rivers can't erode back past the glaciers."


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University of Washington. "Preserved By Ice: Glacial Dams Helped Prevent Erosion Of Tibetan Plateau." ScienceDaily. ScienceDaily, 12 October 2008. <www.sciencedaily.com/releases/2008/10/081008151104.htm>.
University of Washington. (2008, October 12). Preserved By Ice: Glacial Dams Helped Prevent Erosion Of Tibetan Plateau. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2008/10/081008151104.htm
University of Washington. "Preserved By Ice: Glacial Dams Helped Prevent Erosion Of Tibetan Plateau." ScienceDaily. www.sciencedaily.com/releases/2008/10/081008151104.htm (accessed April 18, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nervous Return to Everest a Year After Deadly Avalanche

Nervous Return to Everest a Year After Deadly Avalanche

AFP (Apr. 18, 2015) In the Himalayan town of Lukla, excitement mingles with fear as mountaineers make their way up to Everest a year after an avalanche killed 16 guides and triggered an unprecedented shut-down of the world&apos;s highest peak. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
L.A. Water Cops Remind Residents of Water Conservation

L.A. Water Cops Remind Residents of Water Conservation

Reuters - US Online Video (Apr. 18, 2015) "Water cops" in Los Angeles remind the public about water conservation methods amid California&apos;s prolonged drought. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Planet Defence Conference Tackles Asteroid Threat

Planet Defence Conference Tackles Asteroid Threat

AFP (Apr. 17, 2015) Scientists gathered at a European Space Agency (ESA) facility outside Rome this week for the Planetary Defence Conference 2015 to discuss how to tackle the potential threat from asteroids hitting Earth. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Gulf Scarred, Resilient 5 Years After BP Spill

Gulf Scarred, Resilient 5 Years After BP Spill

AP (Apr. 17, 2015) Five years after the Deepwater Horizon spill in the Gulf of Mexico, splotches of oil still dot the seafloor and wads of tarry petroleum-smelling material hide in pockets in the marshes of Barataria Bay. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins