Featured Research

from universities, journals, and other organizations

Blowing Bubbles On A Nanoscale

Date:
October 21, 2008
Source:
University of Twente
Summary:
Scientists are puzzled by the nanobubbles that can develop on surfaces under water. It should be impossible for them to exist but nevertheless they remain intact for hours. They are something of a mystery, yet it is possible to manipulate the development of these bubbles, according to experts. The bubbles can then, for example, be used to reduce flow resistance in liquids.

A 3-D visualization of nanobubbles present on a hydrophobic surface. The bubbles have a diameter of only 50-200 nanometres and a thickness of 5-20 nanometres.
Credit: Image courtesy of University of Twente

Scientists are puzzled by the nanobubbles that can develop on surfaces under water. It should be impossible for them to exist but nevertheless they remain intact for hours. They are something of a mystery, yet it is possible to manipulate the development of these bubbles, according to PhD candidate Shangjiong Yang at the University of Twente.

The bubbles can then, for example, be used to reduce flow resistance in liquids.

If a water-repellent material is submerged in water, nanobubbles can develop on its surface: extremely small air bubbles with a diameter of 50-200 nanometres and a thickness of 5-20 nanometres. These bubbles are so small they cannot even be seen with a normal microscope and that is why they were not discovered until a few years ago.

According to existing theories, these bubbles should really not exist at all, as the pressure inside them is so great that the gas they contain should be pressed out within a fraction of a second. It is still not understood why these bubbles can remain intact for hours. Once it is possible to manipulate the formation and properties of these bubbles, a whole range of applications becomes possible.

For example, the frictional resistance of flowing liquids is reduced by the bubbles, thus enabling them to be used as a lubricant in extremely narrow channels. This is of practical use in the development of the so-called ‘labs-on-a-chip’: a whole laboratory set-up, reduced to the size of a chip. Before these bubbles can be employed in this way, however, we have to understand them better and be able to determine exactly where they should develop.

Production of nanobubbles

Yang demonstrated that electrolysis is a reliable method for controlling the production of nanobubbles. He discovered a way of influencing the formation and size of the bubbles by applying a voltage. He also researched several fundamental properties of the bubbles. After all, before you can use them you have to understand them. That is why he investigated the influence of temperature, gas concentration, the roughness of the surface and the surface treatment method on bubble formation.

Yang made use of the Atomic Force Microscope (AFM) when carrying out his investigation. It is a microscope with a minuscule needle that moves over the surface (just like the needle of a record player) and monitors differences in height. This needle was used not only to investigate the outlines of the bubbles but also to manipulate them.

Yang received his doctorate from the Faculty of Applied Sciences on 9 October.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Cite This Page:

University of Twente. "Blowing Bubbles On A Nanoscale." ScienceDaily. ScienceDaily, 21 October 2008. <www.sciencedaily.com/releases/2008/10/081013112157.htm>.
University of Twente. (2008, October 21). Blowing Bubbles On A Nanoscale. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2008/10/081013112157.htm
University of Twente. "Blowing Bubbles On A Nanoscale." ScienceDaily. www.sciencedaily.com/releases/2008/10/081013112157.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins