Featured Research

from universities, journals, and other organizations

First Tunable, 'Noiseless' Amplifier May Boost Quantum Computing, Communications

Date:
October 20, 2008
Source:
National Institute of Standards and Technology
Summary:
Researchers have made the first tunable 'noiseless' amplifier. By significantly reducing the uncertainty in delicate measurements of microwave signals, the new amplifier could boost the speed and precision of quantum computing and communications systems.

In the JILA/NIST "noiseless" amplifier, a long line of superconducting magnetic sensors (beginning on the right in this photograph) made of sandwiches of two layers of superconducting niobium with aluminum oxide in between, creates a 'metamaterial' that selectively amplifies microwaves based on their amplitude rather than phase.
Credit: M. Castellanos-Beltran/JILA

Researchers at the National Institute of Standards and Technology (NIST) and JILA, a joint institute of NIST and the University of Colorado (CU) at Boulder, have made the first tunable “noiseless” amplifier. By significantly reducing the uncertainty in delicate measurements of microwave signals, the new amplifier could boost the speed and precision of quantum computing and communications systems.

Conventional amplifiers add unwanted “noise,” or random fluctuations, when they measure and boost electromagnetic signals. Amplifiers that theoretically add no noise have been demonstrated before, but the JILA/NIST technology, described in Nature Physics, offers better performance and is the first to be tunable, operating between 4 and 8 gigahertz, according to JILA group leader Konrad Lehnert. It is also the first amplifier of any type ever to boost signals sufficiently to overcome noise generated by the next amplifier in a series along a signal path, Lehnert says, a valuable feature for building practical systems.

Noisy amplifiers force researchers to make repeated measurements of, for example, the delicate quantum states of microwave fields—that is, the shape of the waves as measured in amplitude (or power) and phase (or point in time when each wave begins). The rules of quantum mechanics say that the noise in amplitude and phase can’t both be zero, but the JILA/NIST amplifier exploits a loophole stipulating that if you measure and amplify only one of these parameters—amplitude, in this case—then the amplifier is theoretically capable of adding no noise. In reality, the JILA/NIST amplifier adds about half the noise that would be expected from measuring both amplitude and phase.

The JILA/NIST amplifier could enable faster, more precise measurements in certain types of quantum computers—which, if they can be built, could solve some problems considered intractable today—or quantum communications systems providing “unbreakable” encryption. It also offers the related and useful capability to “squeeze” microwave fields, trading reduced noise in the signal phase for increased noise in the signal amplitude. By combining two squeezed entities, scientists can “entangle” them, linking their properties in predictable ways that are useful in quantum computing and communications. Entanglement of microwave signals, as opposed to optical signals, offer some practical advantages in computing and communication such as relatively simple equipment requirements, Lehnert says.

The new amplifier is a 5-millimeter-long niobium cavity lined with 480 magnetic sensors called SQUIDs (superconducting quantum interference devices). The line of SQUIDs acts like a “metamaterial,” a structure not found in nature that has strange effects on electromagnetic energy. Microwaves ricochet back and forth inside the cavity like a skateboarder on a ramp. Scientists tune the wave velocity by manipulating the magnetic fields in the SQUIDs and the intensity of the microwaves. An injection of an intense pump tone at a particular frequency, like a skateboarder jumping at particular times to boost speed and height on a ramp, causes the microwave power to oscillate at twice the pump frequency. Only the portion of the signal which is synchronous with the pump is amplified.

Funding for the research was provided by NIST, the National Science Foundation, and a NIST-CU seed grant.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Castellanos-Beltran et al. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Physics, October 5, 2008; DOI: 10.1038/nphys1090

Cite This Page:

National Institute of Standards and Technology. "First Tunable, 'Noiseless' Amplifier May Boost Quantum Computing, Communications." ScienceDaily. ScienceDaily, 20 October 2008. <www.sciencedaily.com/releases/2008/10/081015183506.htm>.
National Institute of Standards and Technology. (2008, October 20). First Tunable, 'Noiseless' Amplifier May Boost Quantum Computing, Communications. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2008/10/081015183506.htm
National Institute of Standards and Technology. "First Tunable, 'Noiseless' Amplifier May Boost Quantum Computing, Communications." ScienceDaily. www.sciencedaily.com/releases/2008/10/081015183506.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins